323 resultados para corticosterone


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bed nucleus of the stria terminalis (BNST) is believed to be a critical relay between the central nucleus of the amygdala (CE) and the paraventricular nucleus of the hypothalamus in the control of hypothalamic–pituitary– adrenal (HPA) responses elicited by conditioned fear stimuli. If correct, lesions of CE or BNST should block expression of HPA responses elicited by either a specific conditioned fear cue or a conditioned context. To test this, rats were subjected to cued (tone) or contextual classical fear conditioning. Two days later, electrolytic or sham lesions were placed in CE or BNST. After 5 days, the rats were tested for both behavioral (freezing) and neuroendocrine (corticosterone) responses to tone or contextual cues. CE lesions attenuated conditioned freezing and corticosterone responses to both tone and con- text. In contrast, BNST lesions attenuated these responses to contextual but not tone stimuli. These results suggest CE is indeed an essential output of the amygdala for the expres- sion of conditioned fear responses, including HPA re- sponses, regardless of the nature of the conditioned stimu- lus. However, because lesions of BNST only affected behav- ioral and endocrine responses to contextual stimuli, the results do not support the notion that BNST is critical for HPA responses elicited by conditioned fear stimuli in general. Instead, the BNST may be essential specifically for contex- tual conditioned fear responses, including both behavioral and HPA responses, by virtue of its connections with the hippocampus, a structure essential to contextual condition- ing. The results are also not consistent with the hypothesis that BNST is only involved in unconditioned aspects of fear and anxiety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic stress is an important risk factor for atherosclerosis, which is a chief process in the development of cardiovascular disease. Increased circulating levels of corticosterone have been documented in several animal models of chronic stress. However, it remains to be established whether corticosterone is sufficient to exacerbate atherosclerosis. To test this hypothesis, apolipoprotein E (ApoE)-deficient mice were fed a high-fat diet for 13 weeks with exposure to either corticosterone or vehicle in the drinking water (CORT and Con). Corticosterone treatment significantly increased atherosclerotic plaque area at the aortic root. Such exacerbation of atherosclerosis was accompanied by significantly lower levels of circulating white blood cells and serum interleukin-1β (IL-1β), and significantly elevated serum concentrations of total cholesterol, low-density lipoprotein (LDL), very-low-density lipoprotein (VLDL) and small dense low-density lipoprotein (sd-LDL) in CORT mice when compared to Con mice. These findings demonstrate that corticosterone is sufficient to exacerbate atherosclerosis in vivo despite its anti-inflammatory properties and that this marked pro-atherogenic phenotype is primarily associated with increased dyslipidaemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prolonged maternal deprivation leads to long-term alterations in hypothalamic–pituitary–adrenal (HPA) axis activity, disturbances of auditory information processing and neurochemical changes in the adult brain, some of which are similar to that observed in schizophrenia. Here we report the adult behavioural effects of maternal deprivation (12 h on postnatal days 9 and 11) in Wistar rats on paradigms of auditory information processing (prepulse inhibition), sensitivity to dopamimetics (amphetamine-induced hyper-locomotion) and cognition (T-maze delayed alternation and Morris water-maze). In addition, we examined the long-lasting effect of chronic 21-day corticosterone treatment during the post-pubertal period (i.e., postnatal days 56–76) on each of these behavioural paradigms in maternally deprived and control rats. Behavioural testing commenced 2 weeks after the termination of corticosterone treatment. Maternal deprivation led to a significant reduction in PPI and impaired spatial learning ability in adulthood, but did not affect the behavioural response to amphetamine. Post-pubertal chronic corticosterone treatment did not have any major long-lasting effects on any of the behavioural measures in either maternally deprived or control rats. Our findings further support maternal deprivation as an animal model of specific aspects of schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the effect of stress on neuronal physiology is widely studied, its effect on the functionality of astrocytes is not well understood. We studied the effect of high doses of stress hormone corticosterone, on two physiological properties of astrocytes, i.e., gliotransmission and interastrocytic calcium waves. To study the release of peptidergic vesicles from astrocytes, hippocampal astrocyte cultures were transfected with a plasmid to express pro-atrial natriuretic peptide (ANP) fused with the emerald green fluorescent protein (ANP.emd). The rate of decrease in fluorescence of ANP.emd on application of ionomycin, a calcium ionophore was monitored. Significant increase in the rate of calcium-dependent exocytosis of ANP.emd was observed with the 100 nM and 1 M corticosterone treatments for 3 h, which depended on the activation of the glucocorticoid receptor. ANP.emd tagged vesicles exhibited increased mobility in astrocyte culture upon corticosterone treatment. Increasing corticosterone concentrations also resulted in concomitant increase in the calcium wave propagation velocity, initiated by focal ATP application. Corticosterone treatment also resulted in increased GFAP expression and F-actin rearrangements. FITC-Phalloidin immunostaining revealed increased formation of cross linked F-actin networks with the 100 nM and 1 M corticosterone treatment. Alternatively, blockade of actin polymerization and disruption of microtubules prevented the corticosterone-mediated increase in ANP.emd release kinetics. This study reports for the first time the effect of corticosterone on gliotransmission via modulation of cytoskeletal elements. As ANP acts on both neurons and blood vessels, modulation of its release could have functional implications in neurovascular coupling under pathophysiological conditions of stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hippocampal neurons are affected by chronic stress and have a high density of cytoplasmic mineralocorticoid and glucocorticoid receptors (MR and GR). Detailed studies on the genomic effects of the stress hormone corticosterone at physiologically relevant concentrations on different steps in synaptic transmission are limited. In this study, we tried to delineate how activation of MR and GR by different concentrations of corticosterone affects synaptic transmission at various levels. The effect of 3-h corticosterone (25, 50, and 100nM) treatment on depolarization-mediated calcium influx, vesicular release and properties of miniature excitatory post-synaptic currents (mEPSCs) were studied in cultured hippocampal neurons. Activation of MR with 25nM corticosterone treatment resulted in enhanced depolarization-mediated calcium influx via a transcription-dependent process and increased frequency of mEPSCs with larger amplitude. On the other hand, activation of GR upon 100nM corticosterone treatment resulted in increase in the rate of vesicular release via the genomic actions of GR. Furthermore, GR activation led to significant increase in the frequency of mEPSCs with larger amplitude and faster decay. Our studies indicate that differential activation of the dual receptor system of MR and GR by corticosterone targets the steps in synaptic transmission differently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was conducted to determine the efficacy of carp pituitary extract, deoxycorticosterone acetate, and human chorionic gonadotropin in inducing spawning in Clarias lazera . Results indicate deoxycorticosterone acetate to be more potent than pituitary extract, although the difference is not significant

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 Stress is a risk factor in psychiatric illnesses such as schizophrenia. The aim of the present study was to investigate the effect of different circulating levels of the adrenal steroid corticosterone (CORT) on locomotor hyperactivity and prepulse inhibition of acoustic startle, two behavioural animal models of aspects of schizophrenia. 2 Male C57BL/6J mice (n = 10 per group) were anaesthetised with isoflurane and sham-operated or adrenalectomised (ADX). ADX mice were implanted with 50 mg pellets consisting of 100% cholesterol, or 2, 10 or 50 mg of CORT mixed with cholesterol. CORT pellet implantation dose dependently increased plasma CORT levels 3 weeks after surgery. Starting 1 week after surgery, mice were tested for prepulse inhibition after injection of saline or 5 mg kg(-1) of haloperidol. 3 In intact mice and in mice implanted with 10 mg of CORT, haloperidol treatment significantly increased prepulse inhibition (average values from 38 - 42 to 52%). Similar results were observed when testing the mice for amphetamine-induced locomotor hyperactivity (5 mg kg(-1)). In contrast, there was no significant effect of haloperidol in mice implanted either with cholesterol or 2 or 50 mg of CORT. 4 These results in behavioural animal models of schizophrenia suggest an important role of the stress hormone CORT in modulating dopaminergic activity in this illness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present Study was to investigate if different levels of circulating corticosterone (CORT) modulate the effect of nicotine on prepulse inhibition (PPI), a measure of sensorimotor gating that is disrupted in schizophrenia and other mental illnesses. Four groups of mice were investigated: sham-operated, adrenalectomized (ADX) and implanted with a cholesterol pellet, ADX and implanted with a 10 mg CORT pellet, or ADX and 50 mg, of CORT. Different CORT levels or doses of nicotine did not significantly affect startle responses. Baseline PPI was significantly reduced in mice implanted with the highest dose of CORT. In ADX mice implanted with cholesterol, nicotine treatment influenced PPI depending on the prepulse intensity. In ADX mice implanted with 50 mg of CORT, treatment with 10 mg/kg of nicotine caused a significant increase in PPI at all prepulse intensities. Binding studies showed that corticosterone treatment had significantly affected nicotinic acetylcholine receptor (nAChR) density in the mouse brain. Treatment with 50 mg CORT decreased I-125-epibatidine binding in the globus pallidus and I-125-alpha-bungarotoxin binding in the claustrum. These results suggest a possible interaction of corticosterone and nicotine at the level of the alpha4- and alpha7-type nAChR in the regulation of PPI. In situations of high circulating levels of corticosterone, nicotine may be beneficial to restore disruption of PPI. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hippocampus, being sensitive to stress and glucocorticoids, plays significant roles in certain types of learning and memory. Therefore, the hippocampus is probably involved in the increasing drug use, drug seeking, and relapse caused by stress. We have studied the effect of stress with morphine on synaptic plasticity in the CA1 region of the hippocampus in vivo and on a delayed-escape paradigm of the Morris water maze. Our results reveal that acute stress enables long-term depression (LTD) induction by low-frequency stimulation (LFS) but acute morphine causes synaptic potentiation. Remarkably, exposure to an acute stressor reverses the effect of morphine from synaptic potentiation ( similar to 20%) to synaptic depression ( similar to 40%), precluding further LTD induction by LFS. The synaptic depression caused by stress with morphine is blocked either by the glucocorticoid receptor antagonist RU38486 or by the NMDA-receptor antagonist D-APV. Chronic morphine attenuates the ability of acute morphine to cause synaptic potentiation, and stress to enable LTD induction, but not the ability of stress in tandem with morphine to cause synaptic depression. Furthermore, corticosterone with morphine during the initial phase of drug use promotes later delayed-escape behavior, as indicated by the morphine-reinforced longer latencies to escape, leading to persistent morphine-seeking after withdrawal. These results suggest that hippocampal synaptic plasticity may play a significant role in the effects of stress or glucocorticoids on opiate addiction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trade-offs between the benefits of current reproduction and the costs to future reproduction and survival are widely recognized. However, such trade-offs might only be detected when resources become limited to the point where investment in one activity jeopardizes investment in others. The resolution of the trade-off between reproduction and self-maintenance is mediated by hormones such as glucocorticoids which direct behaviour and physiology towards self-maintenance under stressful situations. We investigated this trade-off in male and female barn owls in relation to the degree of heritable melanin-based coloration, a trait that reflects the ability to cope with various sources of stress in nestlings. We increased circulating corticosterone in breeding adults by implanting a corticosterone-releasing-pellet, using birds implanted with a placebo-pellet as controls. In males, elevated corticosterone reduced the activity (i.e. reduced home-range size and distance covered within the home-range) independently of coloration, while we could not detect any effect on hunting efficiency. The effect of experimentally elevated corticosterone on female behaviour was correlated with their melanin-based coloration. Corticosterone (cort-) induced an increase in brooding behaviour in small-spotted females, while this hormone had no detectable effect in large-spotted females. Cort-females with small eumelanic spots showed the normal body-mass loss during the early nestling period, while large spotted cort-females did not lose body mass. This indicates that corticosterone induced a shift towards self-maintenance in males independently on their plumage, whereas in females this shift was observed only in large-spotted females.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research has shown that the stress hormone corticosterone can increase depressive and anxiety-like behavior in rats as well as dampen the HPA response to a novel stressor (Kalynchuk et aI., 2004; Johnson et aI., 2006). Several studies have also shown that adolescence is a period of increased sensitivity to the negative effects of stressors (reviewed in McCormick et aI., 2010), which are often the result of exposure to corticosterone, and yet there is no research to date examining the effects of corticosterone administration during adolescence. The purpose of these experiments is to determine both the immediate and enduring effects of prolonged exposure to corticosterone in adolescence and adulthood on anxiety-like behavior, depressive behavior, and the HPA response. In Experiment 1 adolescent and adult rats were administered an injection of 40 mg/kg of corticosterone or vehicle daily for 16 days. Ha l f of the rats were then tested on the elevated plus maze (EPM) one day after their last injection, and the following day were tested on the forced swim test (FST). After the FST, which is a stressor, blood samples were collected at three time points, and the plasma concentrations of corticosterone were determined using a radioimmunoassay. The remaining rats were left undisturbed for three weeks, and then underwent the same testing as the first group. Corticosterone treatment had little effect on anxiety-like and depressive behavior, but it did alter the HPA response to the FST. In those rats tested soon after the period of injections, corticosterone dampened the HPA response as compared to vehicle treated rats in both adolescent and adult treated rats. For the adolescent treated rats that were tested several weeks later, corticosterone treatment increased HPA response as compared to the vehicle treated rats, but the same was not true for the adult treated rats. I t was hypothesized that the lack of behavioral effects of the corticosterone treatment may be the result of the vehicle injections inducing a stress response and thereby both groups would have similarly altered behavior. In Experiment 2 rats were administered corticosterone dissolved in their drinking water with 2.5% ethanol, or jus t the 2.5% ethanol or plain water, to determine the effects of corticosterone treatment without a stressor present. The regular drinking water was replaced with treated water for 16 days either during adulthood or adolescence, and as before, rats were either tested in the FST one day after the water was removed or three weeks later. Again there was no effect of treatment on depressive behavior. Similar to what was observed in Experiment 1, corticosterone treatment dampened the HPA response to a stressor for the rats tested soon after the treatment period. However, in Experiment 2 there was no effect of treatment on HPA response in those rats tested several weeks after they were treated. These results indicate that corticosterone can have a lasting effect on the HPA when administered in adolescence by injections but not in drinking water, which is likely because of the different schedules of exposure and rates of absorption between the two administration methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our group in the Psychology Department at Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) developed a rat genetic model of extreme freezing in response to contextual cues in an experimental chamber previously associated with footshock. One of the lines, Carioca High Freezing (CHF), exhibits an enhanced conditioned freezing response, whereas the other line, Carioca Low Freezing (CLF), shows the opposite response. The present study investigated corticosterone concentration between these two lines of animals and a random (RND) line of rats both under basal conditions and test condition after an emotional challenge using a contextual fear conditioning protocol. Comparisons between basal and test plasma corticosterone concentrations suggested differential basal and fear-induced differences between the two lines. The differences between basal conditions is an important and relevant aspect to be considered in behavioral experiments using or assessing stress and could help to understand variability in naïve populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melatonin, an important marker of the endogenous rhythmicity in mammals, also plays a role in the body defence against pathogens and injuries. In vitro experiments have shown that either pro- or anti-inflammatory agents, acting directly in the organ, are able to change noradrenaline-induced pineal indoleamine production. Whereas corticosterone potentiates melatonin production, incubation of the gland with tumour necrosis factor-alpha decreases pineal hormonal production. In the present study, we show that nocturnal melatonin production measured by intra-pineal microdialysis is enhanced in pineals perfused with corticosterone at concentrations similar to those measured in inflamed animals. In vitro experiments suggest that this enhancement may be due to an increase in the activity of the two enzymes that convert serotonin to N-acetylserotonin (NAS) and NAS to melatonin. The present results support the hypothesis that the pineal gland is a sensor of inflammation mediators and that it plays a central role in the control of the inflammatory response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ogias D, de Andrade Sa ER, Kasai A, Moisan M, Alvares EP, Gama P. Fasting differentially regulates plasma corticosterone-binding globulin, glucocorticoid receptor, and cell cycle in the gastric mucosa of pups and adult rats. Am J Physiol Gastrointest Liver Physiol 298: G117-G125, 2010. First published October 15, 2009; doi:10.1152/ajpgi.00245.2009.-The nutritional status influences gastric growth, and interestingly, whereas cell proliferation is stimulated by fasting in suckling rats, it is inhibited in adult animals. Corticosterone takes part in the mechanisms that govern development, and its effects are regulated in particular by corticosterone-binding globulin (CBG) and glucocorticoid receptor (GR). To investigate whether corticosterone activity responds to fasting and how possible changes might control gastric epithelial cell cycle, we evaluated different parameters during the progression of fasting in 18- and 40-day-old rats. Food restriction induced higher corticosterone plasma concentration at both ages, but only in pups did CBG binding increase after short-and long-term treatments. Fasting also increased gastric GR at transcriptional and protein levels, but the effect was more pronounced in 40-day-old animals. Moreover, in pups, GR was observed in the cytoplasm, whereas, in adults, it accumulated in the nucleus after the onset of fasting. Heat shock protein (HSP) 70 and HSP 90 were differentially regulated and might contribute to the stability of GR and to the high cytoplasmic levels in pups and elevated shuttling in adult rats. As for gastric epithelial cell cycle, whereas cyclin D1 and p21 increased during fasting in pups, in adults, cyclin E slowly decreased, concomitant with higher p27. In summary, we demonstrated that corticosterone function is differentially regulated by fasting in 18-and 40-day-old rats, and such variation might attenuate any possible suppressive effects during postnatal development. We suggest that this mechanism could ultimately increase cell proliferation and allow regular gastric growth during adverse nutritional conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of environmental stress on the physiology and behaviour of higher vertebrates has become an important avenue of research in recent years. Evidence from recent studies has suggested that the avian stress-related hormone corticosterone (CORT) may play a role in immunocompetence and sexual selection. We tested whether CORT is immunosuppressive by studying humoral and cell-mediated immune responses in populations of captive zebra finches selected for divergent peak levels of CORT. We also investigated whether selection for peak CORT has an effect on the quality of several sexually selected regions of the male zebra finch; in addition we compared morphometric parameters and the dominance ranking in males from the different selection lines. We also tested whether different components of the immune system compete for limited resources. We found that selection for divergent levels of peak CORT had little effect on humoral immunity, male sexual signal quality or dominance ranking. However, contrary to expectations, we did find a positive relationship between CORT titre and cell-mediated immunity, as well as a greater cell-mediated response in the birds selected for high CORT titre than those selected for low CORT titre. Consistent with predictions, significant negative relationships were found between both testosterone and CORT titre on humoral immunity. Birds from the low CORT lines were significantly larger in terms of skeletal size than those from the high CORT lines. Overall, our results suggest that the cell-mediated immune response is associated with a reduction in the humoral response, but only in males, and that there is no simple relationship between peak CORT levels and immune function.