969 resultados para core-shell morphology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of protein function in a cellular context ideally requires physiologically representative levels of that protein. Thus conventional nucleic acid-based transfection methods are far from ideal owing to the over expression that generally results. Likewise fusions with protein transduction domains can be problematic whilst delivery via liposomes/nanoparticles typically results in endosomal localisation. Recently polymer microspheres have been reported to be highly effective at delivering proteins into cells and thus provide a viable new alternative for protein delivery (protein transduction). Herein we describe the successful delivery of active ribonuclease A into HeLa cells via novel polymer core-silica shell microspheres. Specifically, poly(styrene-co-vinylbenzylisothiouronium chloride) core particles, generated by dispersion polymerisation, were coated with a poly(styrene-co-trimethoxysilylpropyl methacrylate) shell. The resultant core-shell morphology was characterised by transmission electron, scanning electron and fluorescence confocal microscopies, whilst size and surface charge was assessed by dynamic light scattering and zeta-potential measurements, respectively. Subsequently ribonuclease A was coupled to the microspheres using simple carbodiimide chemistry. Gel electrophoresis confirmed and quantified the activity of the immobilised enzyme against purified HeLa RNA. Finally, the polymer-protein particles were evaluated as protein-transduction vectors in vitro to deliver active ribonuclease A to HeLa cells. Cellular uptake of the microspheres was successful and resulted in reduced levels of both intracellular RNA and cell viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The toughening effect of the content of a core-shell poly(butyl acrylate)/poly(methyl methacrylate) latex polymer (PBA-cs-PMMA) on the mechanical properties, morphology and compatibility of its blends with polycarbonate(PC), i.e., PC/PBA-cs-PMMa, was studied. The mechanical properties of the blends are strongly affected by varying the content of PBA-cs-PMMA in the blend. When the PBA-cs-PMMA content is only 5 wt.-%, the impact strength of PC/PBA-cs-PMMA is almost 19 times as high as that of pure PC, indicating that PBA-cs-PMMA is a very good impact modifier for PC. With increasing interphacial layer thickness and decreasing interphacial tension, the interphacial activity becomes more and more effective and, at the same time, miscibility increases too.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO (core)/graphitic (shell) nanowires were successfully fabricated by a one-step method. Morphology of the as-grown nanowires was studied in detail by scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray analysis (EDS). High resolution TEM micrographs and selected area electron diffraction patterns reveal the core/shell morphology of the nanowires that grew along the c-axis of ZnO. EDS study of the nanowires confirms that there are no impurities within the detectable limit. Superconducting quantum interference device magnetometer measurements show room temperature ferromagnetic ordering in these core/shell nanowires. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the field emission studies of a new type of field emitter, zinc oxide (ZnO) core/graphitic (g-C) shell nanowires are presented. The nanowires are synthesized by chemical vapor deposition of zinc acetate at 1300 degrees C Scanning and transmission electron microscopy characterization confirm high aspect ratio and novel core-shell morphology of the nanowires. Raman spectrum of the nanowires mat represents the characteristic Raman modes from g-C shell as well as from the ZnO core. A low turn on field of 2.75 V/mu m and a high current density of 1.0 mA/cm(2) at 4.5 V/mu m for ZnO/g-C nanowires ensure the superior field emission behavior compared to the bare ZnO nanowires. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GaAs nanowires were grown on Si (111) substrates. By coating a thin GaAs buffer layer on Si surface and using a two-temperature growth, the morphology and crystal structure of GaAs nanowires were dramatically improved. The strained GaAs/GaP core-shell nanowires, based on the improved GaAs nanowires with a shell thickness of 25 nm, showed a significant shift in emission energy of 260 meV from the unstrained GaAs nanowires. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the growth, structural properties and photoluminescence of novel GaAs/AlGaAs radial heterostructure nanowires, fabricated by metalorganic chemical vapour deposition. The effect of growth temperature on nanowire morphology is discussed. Strong photoluminescence is observed from GaAs nanowires with AlGaAs shells. Core/multishell nanowires, of GaAs cores clad in several alternating layers of thick AlGaAs barrier shells and thin GaAs quantum well shells, exhibit a blue-shifted photoluminescence peak believed to arise from quantum confinement effects. A novel two-temperature growth procedure for obtaining GaAs cores is introduced, and other nanowire heterostructures are addressed. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiphase morphology of high impact polypropylene (hiPP), which is a reactor blend of polypropylene (PP) with ethylene-propylene copolymer, was investigated by transmission electron microscopy, selected area electron diffraction, atomic force microscopy, and field-emission scanning electron microscopy techniques in conjunction with an analysis of the hiPP composition and chain structure based on solvent fractionation, C-13-NMR, and differential scanning calorimetry measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ZnO/TiO2 core/shell structure was formed through deposition of a TiO2 coating layer on the hydrothermally fabricated ZnO nanorod arrays through radio frequency magnetron sputtering. The effects of the TiO2 shell's characteristics on the current-voltage behaviors of the core/shell-based dye-sensitized solar cells (CS-DSSC) were investigated. As the rates of injection, transfer, and recombination of electrons of such CS-DSSC were affected significantly by the crystallization, morphology, and continuity of the TiO2 shells, the photovoltaic efficiency was accordingly varied remarkably. In addition, the efficiency was further improved by enhancing the surface area in the core/shell electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In difference to compact objects of a similar size, toroidal structures have some distinguishing properties that originate from their open inner cavity and closed circuit. Here, a general facile methodology is developed to prepare composite rings with varied compositions on a large scale by using core-shell toroids assembled from tri-block copolymers of poly(4-vinyl pyridine) (PVP)/polystyrene (PS)/PVP. Taking advantage of the complexation ability of the PVP shell, varied components that range from polymers, inorganic materials, metals and their compounds, as well as pre-formed nanoparticles are introduced to the toroidal structures to form composite nanostructures. Metal ions can be adsorbed by PVP through complexation. After in situ reduction, a large number of metal-based functional materials can be prepared. PVP is alkaline, and thus capable of catalyzing the sol-gel process to generate an inorganic shell. Furthermore, pre-formed nanoparticles can also be absorbed by the shell through specific interactions. The PS core is not infiltrative during synthesis, and hollow rings can be derived after the polymer templates are removed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The core-shell structured grafted copolymer particles of polybutadiene grafted polymethyl methacrylate (PB-g-PMMA, MB) were prepared by emulsion polymerization. The MB particles were used to modify poly (vinyl chloride) (PVC) by melt blending. The mechanical properties of the PVC blends were investigated. The micro-morphology of the PVC blends was observed by scanning electron microscopy (SEM). The results indicated that the samples with the best impact strength could be obtained when the core-shell weight ratio of PB to PMMA is lower than 93:7, the mechanical properties correlated well with SEM morphologies, the addition of modifier with the ratio core to shell of 93:7 could reduce the domain size of the dispersed phase. Furthermore, the compatibility and properties of the blends were greatly enhanced and improved. The modifier particles could be well dispersed in the PVC matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two etching techniques are used to reveal the morphology of PC/PBA-cs-PMMA blend. One is based on acetic acid (CH3COOH) solutions, whereas the other uses CCl4/ C2H5OH (3/1 v/v). The latter approach shows to be more appropriate and successful for revealing the morphology of PC/PBA-cs-PMMA blend.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycarbonate (PC) and a core-shell latex polymer composed of poly(butyl acrylate) and poly(methyl methacrylate) (PBA-cs-PMMA) as core and shell, respectively, were mixed using a Brabender-like apparatus under different conditions. The mechanical properties, the morphology and the processability of the blends were investigated. Because of the good compatibility of PC and PMMA, even dispersion of PBA-cs-PMMA in PC matrix and good adhesion between the components have been achieved. PBA-cs-PMMA is thus a very good impact modifier for PC. The toughening mechanism is both cavitation and shear yielding, as indicated by SEM observation. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High quality CuS and CuS/ZnS core/shell nanocrystals (NCs) were synthesized in a large quantity using a facile hydrothermal method at low temperatures of 60 C and evaluated in the photodegradation of Rhodamine B (RhB) under visible light irradiation. Synthesis time plays an important role in controlling the morphology, size and photocatalytic activity of both CuS and CuS/ZnS core/shell NCs which evolve from spherical shaped particles to form rods with increasing reaction time, and after 5 h resemble "flower" shaped morphologies in which each "flower" is composed of many NCs. Photocatalytic activity originates from photo-generated holes in the narrow bandgap CuS, with encapsulation by large bandgap ZnS layers used to form the core/shell structure that improves the resistance of CuS towards photocorrosion. Such CuS/ZnS core/shell structures exhibit much higher photocatalytic activity than CuS or ZnS NCs alone under visible light illumination, and is attributed to higher charge separation rates for the photo-generated carriers in the core/shell structure. © 2013 Elsevier B.V.