948 resultados para condition-based maintenance, fault diagnosis, envelope detection, computer simulation, spectral averaging


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Offshore wind turbine requires more systematized operation and maintenance strategies to ensure systems are harmless, profitable and cost-effective. Condition monitoring and fault diagnostic systems ominously plays an important role in offshore wind turbine in order to cut down maintenance and operational costs. Condition monitoring techniques which describing complex faults and failure mode types and their generated traceable signs to provide cost-effective condition monitoring and predictive maintenance and their diagnostic schemes. Continuously monitor the condition of critical parts are the most efficient way to improve reliability of wind turbine. Implementation of Condition Based Maintenance (CBM) strategy provides right time maintenance decisions and Predictive Health Monitoring (PHM) data to overcome breakdown and machine downtime. Fault detection and CBM implementation is challenging for off shore wind farm due to the complexity of remote sensing, components health and predictive assessment, data collection, data analysis, data handling, state recognition, and advisory decision. The rapid expansion of wind farms, advanced technological development and harsh installation sites needs a successful CM approach. This paper aims to review brief status of recent development of CM techniques and focusing with major faults takes place in gear box and bearing, rotor and blade, pitch, yaw and tower system and generator and control system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous monitoring of diesel engine performance is critical for early detection of fault developments in an engine before they materialize into a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few nonintrusive condition monitoring techniques that can be utilized for such a task. Furthermore, the technique is more suitable for mass industry deployments than other non-intrusive methods such as vibration and acoustic emission techniques due to the low instrumentation cost, smaller data size and robust signal clarity since IAS is not affected by the engine operation noise and noise from the surrounding environment. A combination of IAS and order analysis was employed in this experimental study and the major order component of the IAS spectrum was used for engine loading estimation and fault diagnosis of a four-stroke four-cylinder diesel engine. It was shown that IAS analysis can provide useful information about engine speed variation caused by changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectra directly associated with the engine firing frequency (at twice the mean shaft rotating speed) can be utilized to estimate engine loading condition regardless of whether the engine is operating at healthy condition or with faults. The amplitude of this order component follows a distinctive exponential curve as the loading condition changes. A mathematical relationship was then established in the paper to estimate the engine power output based on the amplitude of this order component of the IAS spectrum. It was further illustrated that IAS technique can be employed for the detection of a simulated exhaust valve fault in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most existing research on maintenance optimisation for multi-component systems only considers the lifetime distribution of the components. When the condition-based maintenance (CBM) strategy is adopted for multi-component systems, the strategy structure becomes complex due to the large number of component states and their combinations. Consequently, some predetermined maintenance strategy structures are often assumed before the maintenance optimisation of a multi-component system in a CBM context. Developing these predetermined strategy structure needs expert experience and the optimality of these strategies is often not proofed. This paper proposed a maintenance optimisation method that does not require any predetermined strategy structure for a two-component series system. The proposed method is developed based on the semi-Markov decision process (SMDP). A simulation study shows that the proposed method can identify the optimal maintenance strategy adaptively for different maintenance costs and parameters of degradation processes. The optimal maintenance strategy structure is also investigated in the simulation study, which provides reference for further research in maintenance optimisation of multi-component systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preventive maintenance of traction equipment for Very High Speed Trains (VHST) nowadays is becoming very expensive owing to the high complexity and quality of these components that require high reliability. An efficient maintenance approach like the Condition-Based Maintenance (CBM) should be implemented to reduce the costs. For this purpose, an experimental full-scale test rig for the CBM of VHST traction equipment has been designed to investigate in detail failures in the main mechanical components of system, i.e. motor, bearings and gearbox. The paper describes the main characteristics of this unique test rig, able to reproduce accurately the train operating conditions, including the relative movements of the motor, the gearbox and the wheel axle. Gearbox, bearing seats and motor are equipped by accelerometers, thermocouples, torque meter and other sensors in different positions. The testing results give important information about the most suitable sensor position and type to be installed for each component and show the effectiveness of the techniques used for the signal analysis in order to identify faults of the gearbox and motor bearings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globalization has increased the pressure on organizations and companies to operate in the most efficient and economic way. This tendency promotes that companies concentrate more and more on their core businesses, outsource less profitable departments and services to reduce costs. By contrast to earlier times, companies are highly specialized and have a low real net output ratio. For being able to provide the consumers with the right products, those companies have to collaborate with other suppliers and form large supply chains. An effect of large supply chains is the deficiency of high stocks and stockholding costs. This fact has lead to the rapid spread of Just-in-Time logistic concepts aimed minimizing stock by simultaneous high availability of products. Those concurring goals, minimizing stock by simultaneous high product availability, claim for high availability of the production systems in the way that an incoming order can immediately processed. Besides of design aspects and the quality of the production system, maintenance has a strong impact on production system availability. In the last decades, there has been many attempts to create maintenance models for availability optimization. Most of them concentrated on the availability aspect only without incorporating further aspects as logistics and profitability of the overall system. However, production system operator’s main intention is to optimize the profitability of the production system and not the availability of the production system. Thus, classic models, limited to represent and optimize maintenance strategies under the light of availability, fail. A novel approach, incorporating all financial impacting processes of and around a production system, is needed. The proposed model is subdivided into three parts, maintenance module, production module and connection module. This subdivision provides easy maintainability and simple extendability. Within those modules, all aspect of production process are modeled. Main part of the work lies in the extended maintenance and failure module that offers a representation of different maintenance strategies but also incorporates the effect of over-maintaining and failed maintenance (maintenance induced failures). Order release and seizing of the production system are modeled in the production part. Due to computational power limitation, it was not possible to run the simulation and the optimization with the fully developed production model. Thus, the production model was reduced to a black-box without higher degree of details.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of ultra high strength steels (UHSS) in the automotive industry presents a significant opportunity for continued vehicle light-weighting, due to possible strength-to-weight improvements of three to four times that of conventional sheet steel grades. This performance benefit is achievable whist maintaining most of the advantages of low-cost mass-production associated with the cold stamping of sheet steel for automotive body components. However, the introduction of UHSS can result in significantly increased wear of the stamping tools, which is difficult to predict at the design stage and can lead to unexpected process failure during mass-production. Therefore, there is a need to be able to monitor and predict the onset of severe wear, such that the best course of condition-based maintenance can be scheduled and unscheduled stoppages due to tool wear eradicated. This paper describes a novel active monitoring system that is being developed by researchers at Deakin University, The Australian National University and Ford Motor Company, Asia Pacific and Africa. The aim of the active monitoring system is to detect the initial onset of a change of state, such as wear, through the measurement of variables such as punch force and audio signals. A semi-industrial stamping process, using a progressive die setup and high strength steel sheet with hardened tool steel tooling, is the experimental basis for the initial model and system development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diagnostics of rolling element bearings is usually performed by means of vibration signals measured by accelerometers placed in the proximity of the bearing under investigation. The aim is to monitor the integrity of the bearing components, in order to avoid catastrophic failures, or to implement condition based maintenance strategies. In particular, the trend in this field is to combine in a single algorithm different signal-enhancement and signal-analysis techniques. Among the first ones, Minimum Entropy Deconvolution (MED) has been pointed out as a key tool able to highlight the effect of a possible damage in one of the bearing components within the vibration signal. This paper presents the application of this technique to signals collected on a simple test-rig, able to test damaged industrial roller bearings in different working conditions. The effectiveness of the technique has been tested, comparing the results of one undamaged bearing with three bearings artificially damaged in different locations, namely on the inner race, outer race and rollers. Since MED performances are dependent on the filter length, the most suitable value of this parameter is defined on the basis of both the application and measured signals. This represents an original contribution of the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network diagnosis in Wireless Sensor Networks (WSNs) is a difficult task due to their improvisational nature, invisibility of internal running status, and particularly since the network structure can frequently change due to link failure. To solve this problem, we propose a Mobile Sink (MS) based distributed fault diagnosis algorithm for WSNs. An MS, or mobile fault detector is usually a mobile robot or vehicle equipped with a wireless transceiver that performs the task of a mobile base station while also diagnosing the hardware and software status of deployed network sensors. Our MS mobile fault detector moves through the network area polling each static sensor node to diagnose the hardware and software status of nearby sensor nodes using only single hop communication. Therefore, the fault detection accuracy and functionality of the network is significantly increased. In order to maintain an excellent Quality of Service (QoS), we employ an optimal fault diagnosis tour planning algorithm. In addition to saving energy and time, the tour planning algorithm excludes faulty sensor nodes from the next diagnosis tour. We demonstrate the effectiveness of the proposed algorithms through simulation and real life experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern machines are complex and often required to operate long hours to achieve production targets. The ability to detect symptoms of failure, hence, forecasting the remaining useful life of the machine is vital to prevent catastrophic failures. This is essential to reducing maintenance cost, operation downtime and safety hazard. Recent advances in condition monitoring technologies have given rise to a number of prognosis models that attempt to forecast machinery health based on either condition data or reliability data. In practice, failure condition trending data are seldom kept by industries and data that ended with a suspension are sometimes treated as failure data. This paper presents a novel approach of incorporating historical failure data and suspended condition trending data in the prognostic model. The proposed model consists of a FFNN whose training targets are asset survival probabilities estimated using a variation of Kaplan-Meier estimator and degradation-based failure PDF estimator. The output survival probabilities collectively form an estimated survival curve. The viability of the model was tested using a set of industry vibration data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a machine learning technique called anomaly detection is employed for wind turbine bearing fault detection. Basically, the anomaly detection algorithm is used to recognize the presence of unusual and potentially faulty data in a dataset, which contains two phases: a training phase and a testing phase. Two bearing datasets were used to validate the proposed technique, fault-seeded bearing from a test rig located at Case Western Reserve University to validate the accuracy of the anomaly detection method, and a test to failure data of bearings from the NSF I/UCR Center for Intelligent Maintenance Systems (IMS). The latter data set was used to compare anomaly detection with SVM, a previously well-known applied method, in rapidly finding the incipient faults.