999 resultados para claudin-low


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The claudin-low molecular subtype of breast cancer includes triple negative invasive carcinomas, with a high frequency of metaplastic and medullary features. The aim of this study was to evaluate the immunohistochemistry expression of claudins in a series of metaplastic breast carcinomas. We also assessed other claudin-low features, such as the cancer stem cell-like and epithelial-to-mesenchymal transition phenotypes. Results: The majority of the cases showed weak or negative staining for membrane claudins expression. We found 76.9% (10/13) low expressing cases for claudin-1, 84.6% (11/13) for claudin-3 and claudin-4, and 92.3% (12/13) for claudin-7. Regarding the cancer stem cell marker ALDH1, 30.8% (4/13) showed positive staining. We also showed that the majority of the cases presented a CD44(+)CD24(-/low) phenotype, positivity for vimentin and lack of E-cadherin expression. Interestingly, these claudin-low molecular features were specific of the mesenchymal component of metaplastic breast carcinomas, since its frequency was very low in other breast cancer molecular subtypes, as luminal, HER2-overexpressing and non-metaplastic triple negative tumors. Conclusions: The negative/low expression of claudins and E-cadherin, high levels of vimentin, and the breast cancer stem cell phenotype suggests that metaplastic breast carcinomas have similar features to the ones included in the claudin-low molecular subtype, specially their mesenchymal components. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To unravel the multimodal nanotheranostic ability of Fe3O4-saturated bovine lactoferrin nanocapsules (FebLf NCs) in claudin-low, triple-negative breast cancer model. MATERIALS & METHODS: Xenograft study was performed to examine biocompatibility, antitumor efficacy and multimodal nanotheranostic action in combination with near-infrared live mice imaging. RESULTS: FebLf NCs exhibited a size range of 80 nm ± 5 nm with observed superparamagnetism. FebLf NCs successfully internalized into breast cancer cells through receptor-mediated endocytosis and induced apoptosis through the downregulation of inhibitor of apoptosis survivin and livin proteins. Investigations revealed a remarkable biocompatibility, anticancer efficacy of the FebLf NCs. Near-infrared imaging observations confirmed selective localization of multimodal FebLf NCs at the tumor site and lead to time-dependent reduction of tumor growth. CONCLUSION: FebLf NCs can be safe, biocompatible nanotheranostic approach for real-time imaging and monitoring the effect of drugs in real time and have potentials in future clinical trials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resistance to chemotherapy and metastases are the major causes of breast cancer-related mortality. Moreover, cancer stem cells (CSC) play critical roles in cancer progression and treatment resistance. Previously, it was found that CSC-like cells can be generated by aberrant activation of epithelial–mesenchymal transition (EMT), thereby making anti-EMT strategies a novel therapeutic option for treatment of aggressive breast cancers. Here, we report that the transcription factor FOXC2 induced in response to multiple EMT signaling pathways as well as elevated in stem cell-enriched factions is a critical determinant of mesenchymal and stem cell properties, in cells induced to undergo EMT- and CSC-enriched breast cancer cell lines. More specifically, attenuation of FOXC2 expression using lentiviral short hairpin RNA led to inhibition of the mesenchymal phenotype and associated invasive and stem cell properties, which included reduced mammosphere-forming ability and tumor initiation. Whereas, overexpression of FOXC2 was sufficient to induce CSC properties and spontaneous metastasis in transformed human mammary epithelial cells. Furthermore, a FOXC2-induced gene expression signature was enriched in the claudin-low/basal B breast tumor subtype that contains EMT and CSC features. Having identified PDGFR-β to be regulated by FOXC2, we show that the U.S. Food and Drug Administration-approved PDGFR inhibitor, sunitinib, targets FOXC2-expressing tumor cells leading to reduced CSC and metastatic properties. Thus, FOXC2 or its associated gene expression program may provide an effective target for anti-EMT-based therapies for the treatment of claudin-low/basal B breast tumors or other EMT-/CSC-enriched tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transition between epithelial and mesenchymal states is a feature of both normal development and tumor progression. We report that expression of chloride channel accessory protein hCLCA2 is a characteristic of epithelial differentiation in the immortalized MCF10A and HMLE models, while induction of epithelial-to-mesenchymal transition by cell dilution, TGFβ or mesenchymal transcription factors sharply reduces hCLCA2 levels. Attenuation of hCLCA2 expression by lentiviral small hairpin RNA caused cell overgrowth and focus formation, enhanced migration and invasion, and increased mammosphere formation in methylcellulose. These changes were accompanied by downregulation of E-cadherin and upregulation of mesenchymal markers such as vimentin and fibronectin. Moreover, hCLCA2 expression is greatly downregulated in breast cancer cells with a mesenchymal or claudin-low profile. These observations suggest that loss of hCLCA2 may promote metastasis. We find that higher-than-median expression of hCLCA2 is associated with a one-third lower rate of metastasis over an 18-year period among breast cancer patients compared with lower-than-median (n=344, unfiltered for subtype). Thus, hCLCA2 is required for epithelial differentiation, and its loss during tumor progression contributes to metastasis. Overexpression of hCLCA2 has been reported to inhibit cell proliferation and is accompanied by increases in chloride current at the plasma membrane and reduced intracellular pH (pHi). We found that knockdown cells have sharply reduced chloride current and higher pHi, both characteristics of tumor cells. These results suggest a mechanism for the effects on differentiation. Loss of hCLCA2 may allow escape from pHi homeostatic mechanisms, permitting the higher intracellular and lower extracellular pH that are characteristic of aggressive tumor cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study successfully developed orally deliverable multimodular zinc (Zn) iron oxide (Fe3O4)-saturated bovine lactoferrin (bLf)-loaded polymeric nanocapsules (NCs), and evaluated their theranostic potential (antitumor efficacy, magnetophotothermal efficacy and imaging capability) in an in vivo human xenograft CpG-island methylator phenotype (CIMP)-1(+)/CIMP2(-)/chromosome instability-positive colonic adenocarcinoma (Caco2) and claudin-low, triple-negative (ER(-)/PR(-)/HER2(-); MDA-MB-231) breast cancer model. Mice fed orally on the Zn-Fe-bLf NC diet showed downregulation in tumor volume and complete regression in tumor volume after 45 days of feeding. In human xenograft colon cancer, vehicle-control NC diet-group (n=5) mice showed a tumor volume of 52.28±11.55 mm(3), and Zn-Fe-bLf NC diet (n=5)-treated mice had a tumor-volume of 0.10±0.073 mm(3). In the human xenograft breast cancer model, Zn-Fe-bLf NC diet (n=5)-treated mice showed a tumor volume of 0.051±0.062 mm(3) within 40 days of feeding. Live mouse imaging conducted by near-infrared fluorescence imaging of Zn-Fe-bLf NCs showed tumor site-specific localization and regression of colon and breast tumor volume. Ex vivo fluorescence-imaging analysis of the vital organs of mice exhibited sparse localization patterns of Zn-Fe-bLf NCs and also confirmed tumor-specific selective localization patterns of Zn-Fe-bLf NCs. Dual imaging using magnetic resonance imaging and computerized tomography scans revealed an unprecedented theranostic ability of the Zn-Fe-bLf NCs. These observations warrant consideration of multimodular Zn-Fe-bLf NCs for real-time cancer imaging and simultaneous cancer-targeted therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to identify the CD24 and CD44 immunophenotypes within invasive ductal breast carcinoma (I DC) subgroups defined by immunohistochesmistry markers and to determine its influence on prognosis as well as its association with the expression of Ki-67, cytokeratins (CK5 and CK 18) and claudin-7. Immunohistochemical expression of CD44 and CD24 alone or in combination was investigated in 95 IDC cases arranged in a tissue microarray (TMA). The association with subgroups defined as luminal A and B; HER2 rich and triple negative, or with the other markers and prognosis was analyzed. CD44(+)/CD24(-) and CD44(-)/CD24(+) were respectively present in 8.4% and 16.8% of the tumors, a lack of both proteins was detected in 6.3%, while CD441(-)/CD24(+) was observed in 45.3% of the tumors. Although there was no significant correlation between subgroups and different phenotypes, the CD44(+)/CD24(-) phenotype was more common in the basal subgroups but absent in HER2 tumors, whereas luminal tumors are enriched in CD44(-)/CD24(+) and CD44(+)/CD24(+) cells. The frequency of CD44(+)/CD24(-) or CD44(-)/CD24(+) was not associated with clinical characteristics or biological markers. There was also no significant association of these phenotypes with the event free (DFS) and overall survival (OS). Single CD44(+) was evident in 57.9% of the tumors and was marginally associated to grading and not to any other tumor characteristics as well as OS and DFS. CD24(+) was positive in 74.7% of the tumors, showing a significant association with estrogen receptor, progesterone receptor and Ki-67 and a marginal association with CKI8 and claudin-7. Expression of claudin-7 and Ki-67 did not associate with the cancer subgroups, while a positive association between CK18 and the luminal subgroups was found (P=0.03). CK5, CK18 and Ki-67 expression had no influence in OS or DFS. Single CD24(+) (P=0.07) and claudin-7 positivity (P=0.05) were associated with reduced time of recurrence, suggesting a contribution of these markers to aggressiveness of breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tetraspanins are thought to exert their biological function(s) by co-ordinating the lateral movement and trafficking of associated molecules into tetraspanin-enriched microdomains. A second four-TM (transmembrane) domain protein family, the Claudin superfamily, is the major structural component of cellular TJs (tight junctions). Although the Claudin family displays low sequence homology and appears to be evolutionarily distinct from the tetraspanins, CD81 and Claudin-1 are critical molecules defining HCV (hepatitis C virus) entry; we recently demonstrated that CD81-Claudin-1 complexes have an essential role in this process. To understand the molecular basis of CD81-Claudin-1 complex formation, we produced and purified milligram quantities of full-length CD81 and Claudin-1, alone and in complex, in both detergent and lipid contexts. Structural characterization of these purified proteins will allow us to define the mechanism(s) underlying virus-cell interactions and aid the design of therapeutic agents targeting early steps in the viral life cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low temperature synthesis method based on the decomposition of urea at 90°C in water has been developed to synthesise fraipontite. This material is characterised by a basal reflection 001 at 7.44 Å. The trioctahedral nature of the fraipontite is shown by the presence of a 06l band around 1.54 Å, while a minor band around 1.51 Å indicates some cation ordering between Zn and Al resulting in Al-rich areas with a more dioctahedral nature. TEM and IR indicate that no separate kaolinite phase is present. An increase in the Al content however, did result in the formation of some SiO2 in the form of quartz. Minor impurities of carbonate salts were observed during the synthesis caused by to the formation of CO32- during the decomposition of urea.