968 resultados para citrus variegated chlorosis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Net photosynthesis (A) and transpiration rates (E), stomatal conductance (g), water use efficiency (WUE), intrinsic water use efficiency (IWUE) and internal leaf CO2 concentration (C) in response to different vapor pressure deficit (1.2 and 2.5 kPa) were investigated in 'Pera' sweet orange plants affected by citrus variegated chlorosis (CVC), a disease caused by Xylella fastidiosa. All plants were well watered and leaf water potential (Pw) was also measured by the psychrometric technique. Results showed that healthy plants responded to higher vapor pressure deficit (VPD), lowering its net photosynthesis and transpiration rates, and stomatal conductance. However, diseased plants presented no clear response to VPD, showing lower A, E and g for both VPDs studied and very similar values to these variables in healthy plants at the highest VPD. Internal leaf CO2 concentration also decreased for healthy plants when under the highest VPD, and surprisingly, the same pattern of response was found in plants with CVC. These results, the lower Psi(w) and higher WUE values for diseased plants, indicated that this disease may cause stomatal dysfunction and affect the water resistance through xylem vessels, which ultimately may play some role in photosynthetic metabolism. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xylella fastidiosa isolate 8.1,b obtained from a sweet orange tree affected by citrus variegated chlorosis in the state of Sb Paulo, Brazil, and shown in 1993 to be the causal agent of the disease, was cloned by repeated culture in liquid and on solid PW medium, yielding triply cloned strain 9a5c. The eighth and the 16th passages of strain 9a5c were mechanically inoculated into sweet orange plants. Presence of X. fastidiosa in sweet orange leaves of shoots having grown after inoculation (first-flush shoots) was detected by DAS-ELISA and PCR. Thirty-eight days after inoculation, 70% of the 20 inoculated plants rested positive, and all plants gave strong positive reactions 90 days after inoculation. Symptoms first appeared after 3 months and were conspicuous after 5 months. X. fastidiosa was reisolated from sweet orange leaves, 44 days after inoculation. These results indicate that X. fastidiosa strain 9a5c, derived from pathogenic isolate 8.1.b by triply cloning, is also pathogenic, Strain 9a5c is now used for the X. fastidiosa genome sequencing project undertaken on a large scale in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xylella fastidiosa is a xylem-dwelling, insect-transmitted, gamma-proteobacterium that causes diseases in many plants, including grapevine, citrus, periwinkle, almond, oleander, and coffee. X. fastidiosa has an unusually broad host range, has an extensive geographical distribution throughout the American continent, and induces diverse disease phenotypes. Previous molecular analyses indicated three distinct groups of X.fastidiosa isolates that were expected to be genetically divergent. Here we report the genome sequence of X. fastidiosa (Temecula strain), isolated from a naturally infected grapevine with Pierce's disease (PD) in a wine-grape-growing region of California. Comparative analyses with a previously sequenced X.fastidiosa strain responsible for citrus variegated chlorosis (CVC) revealed that 98% of the PD X.fastidiosa Temecula genes are shared with the CVC X. fastidiosa strain 9a5c genes. Furthermore, the average amino acid identity of the open reading frames in the strains is 95.7%. Genomic differences are limited to phage-associated chromosomal rearrangements and deletions that also account for the strain-specific genes present in each genome. Genomic islands, one in each genome, were identified, and their presence in other X.fastidiosa strains was analyzed. We conclude that these two organisms have identical metabolic functions and are likely to use a common set of genes in plant colonization and pathogenesis, permitting convergence of functional genomic strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study translocation of Xylella fastidiosa to citrus rootstocks, budsticks from citrus variegated chlorosis (CVC)-affected cv. Pera sweet orange (Citrus sinenesis (L.) Osb.) were top grafted on 15 citrus rootstocks. Disease symptoms were conspicuous 3 months later on all 15 rootstocks tested. The presence of X. fastidiosa was confirmed by light microscopy, double-antibody sandwich enzyme-linked immunosorbent assays, and polymerase chain reaction in rootlets and main roots of CVC-symptomatic Pera sweet orange in 11 of the 15 rootstocks tested. These results suggest that bacterial translocation from the aerial plant parts to the root system occurs but is not essential for X. fastidiosa to induce symptoms in the aerial parts. Bacterial translocation to the roots was not correlated with CVC leaf-symptom severity in the Pera scion. To determine if CVC disease could be transmitted by natural root grafts, two matched seedlings of each of four sweet orange cultivars (Pera, Natal, Valencia, and Caipira) were transplanted into single pots. One seedling rootstock of each pair was inoculated by top grafting with a CVC-contaminated budstick while the other seedling rootstock was cut but not graft inoculated. Transmission of X. fastidiosa from an inoculated plant to a noninoculated plant sharing the same pot was observed in all four sweet orange cultivars tested. Transmission was confirmed by observation of natural roots grafts between the two plants, presence of X. fastidiosa in the root grafts, and disease development in the uninoculated plants. This is the first report of transmission of CVC disease through natural root grafts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Citrus variegated chlorosis (CVC), a citrus disease first discovered in Brazil in 1987, is caused by the bacterium Xylella fastidiosa and transmitted by sharpshooters and budwood. Since the disease affects almost all sweet orange cultivars, it has become one of the most serious problems for Brazilian citriculture. To evaluate their resistance to CVC disease, fifteen tangerines or mandarins (C. reticulata Blanco) and their hybrids were grafted on Rangpur lime (C. limonia Osb.) and inoculated with CVC-contaminated Pera sweet orange (C. sinensis (L.) Osb.) by twig grafting in a greenhouse. Tangerines and their hybrids Wilking, Fortune, Sunki, Ellendale, Orlando tangelo, Nunes clementine, Nova, Sun Shu Sha Kat, Suenkat, and Batangas showed CVC leaf symptoms and gave positive results on enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) (with specific primers for X. fastidiosa), indicating that they are susceptible to CVC. Although X. fastidiosa bacteria were detected by ELISA and PCR in inoculated plants of tangerines Cravo and Oneco, no CVC leaf symptoms were observed on these two cultivars, suggesting that they are tolerant to the disease. CVC leaf symptoms were not observed and X. fastidiosa was not detected in tangerine Dancy and mandarins Okitsu satsuma and Ponkan after inoculation, showing that they are resistant to the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Citrus Variegated Chlorosis (CVC) is currently present in approximately 40% of citrus plants in Brazil and causes an annual loss of around 120 million US dollars to the Brazilian citrus industry. Despite the fact that CVC has been present in Brazil for over 20 years, a relationship between disease intensity and yield loss has not been established. In order to achieve this, an experiment was carried out in a randomized block design in a 3 x 2 factorial scheme with 10-year-old Natal sweet orange. The following treatments were applied: irrigation with 0, 50 or 100% of the evapotranspiration of the crop, combined with natural infection or artificial inoculation with Xylella fastidiosa, the causal agent of CVC. The experiment was evaluated during three seasons. A negative exponential model was fitted to the relationships between yield versus CVC severity and yield versus Area Under Disease Progress Curve (AUDPC). In addition, the relationship between yield versus CVC severity and canopy volume was fitted by a multivariate exponential model. The use of the AUDPC variable showed practical limitations when compared with the variable CVC severity. The parameter values in the relationship of yieldCVC severity were similar for all treatments unlike in the multivariate model. Consequently, the yieldCVC intensity relationship (with 432 data points) could be described by one single model: y = 114.07 exp(-0.017 x), where y is yield (symptomless fruit weight in kg) and x is disease severity (R2 = 0.45; P < 0.01).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A distribuição espacial das espécies de cigarrinhas (Dilobopterus costalimai Young, Acrogonia sp. e Oncometopia facialis Signoret), vetoras da Xylella fastidiosa, agente causal da Clorose Variegada dos Citros, foi estudada com o uso da geoestatística. As avaliações foram feitas em um pomar comercial de laranja 'Pêra' (Citrus sinensis [L.] Osb.), objetivando estabelecer meios para melhor controle dos vetores e da doença. O monitoramento da ocorrência das cigarrinhas no pomar foi feito através de amostragens mensais, utilizando-se armadilhas adesivas amarelas de 3 x 5, distribuídas uniformemente em 50 pontos na área, dispostas em laranjeiras à altura de 1,5 m do solo e substituídas mensalmente. Acrogonia sp. foi a espécie prevalente nas amostragens. Os resultados possibilitaram ajustar modelos aos semivariogramas da distribuição espacial das três espécies no pomar estudado. Durante os três anos consecutivos de amostragem, as populações de Acrogonia sp., D. costalimai e O. facialis apresentaram modelos de distribuição agregada somente nos meses de verão, inverno e primavera, respectivamente, mostrando a necessidade de monitoramento constante desses vetores para reduzir a sua população em épocas favoráveis ao seu desenvolvimento. Através de parâmetros geoestatísticos foi possível calcular a área de agregação das cigarrinhas no pomar. A espécie Acrogonia sp. apresentou área média de agregação de 15.760 m², enquanto para O. facialis e D. costalimai foi possível constatar áreas médias de agregação de 11.555 m² e 10.980 m², respectivamente. Esses resultados indicaram que para um levantamento seguro de cigarrinhas é necessário pelo menos dispor de uma armadilha por hectare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: Detection of Xylella fastidiosa in citrus plants and insect vectors.Methods and Results: Chelex 100 resin matrix was successfully standardized allowing a fast DNA extraction of X. fastidiosa. An amplicon of 500 bp was observed in samples of citrus leaf and citrus xylem extract, with and without symptoms of citrus variegated chlorosis, using PCR with a specific primer set indicating the presence of X. fastidiosa. The addition of insoluble acid-washed polyvinylpyrrolidone (PVPP) prior to DNA extraction of insect samples using Chelex 100 resin together with nested-PCR permitted the detection of X. fastidiosa within sharpshooter heads with great sensitivity. It was possible to detect up to two bacteria per reaction. From 250 sharpshooter samples comprising four species (Dilobopterus costalimai, Oncometopia facialis, Bucephalogonia xanthopis and Acrogonia sp.), 87 individuals showed positive results for X. fastidiosa in a nested-PCR assay.Conclusions: the use of Chelex 100 resin allowed a fast and efficient DNA extraction to be used in the detection of X. fastidiosa in citrus plants and insect vectors by PCR and nested-PCR assays, respectively.Significance and Impact of the study: the employment of efficient and sensitive methods to detect X. fastidiosa in citrus plants and insect vectors will greatly assist epidemiological studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Difficulties in reproducing the citrus variegated chlorosis (CVC) disease symptoms in expertmental plants have delayed implementation of studies to better understand the essential aspects of this important disease. In an extensive Study, cultivars of sweet orange (Citrus sinensis) were inoculated with Xylella fastidiosa using procedures that included root immersion, and stein absorption, pricking, or infiltration of the inoculum into plants of different ages. Inoculum consisted of 5-day-old cultures or cell suspensions of CVC strain 9a5c diluted in phosphate-buffered saline. Inoculated plants and controls were grown, or transferred just after inoculation, to 5-liter pots or 72-cell foam trays. Approximately 4, 5, 9, and 12 months after inoculation, leaves were collected and processed for polymerase chain reaction analysis or X. fastidiosa isolation on BCYE agar medium. Root immersion and stem inoculation of 4- and 6-month-old plants resulted in low percentages of symptomatic (0 to 7%) and plants positive by isolation (0 to 9%). Pinpricked or injected stems of I-month-old seedlings resulted in high percentages of plants symptomatic (29 and 90% in Pera Rio, 75, 59, and 83% in Valencia, and 77% in Natal) or positive by isolation (26 and 93% in Pera Rio, 98, 96, and 83% in Valencia, and 77% in Natal), In foam trays, the seedlings grew less, the incubation period was shorter. and disease severity was higher than in pots. This system allows testing of higher numbers of plants in a reduced space with a more precise reproduction of the experimental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to obtain information about genetic diversity and make some inferences about the relationship of 27 strains of Xylella fastidiosa from different hosts and distinct geographical areas. Single-nucleotide polymorphism (SNP) molecular markers were identified in DNA sequences from 16 distinct regions of the genome of 24 strains of X. fastidiosa from coffee and citrus plants. Among the Brazilian strains, coffee-dependent strains have a greater number of SNPs (10 to 24 SNPs) than the citrus-based strains (2 to 12 SNPs); all the strains were compared with the sequenced strain 9a5c. The identified SNP markers were able to distinguish, for the first time, strains from citrus plants and coffee and showed that strains from coffee present higher genetic diversity than the others. These markers also have proven to be efficient for discriminating strains from the same host obtained from different geographic regions. X. fastidiosa, the causal agent of citrus variegated chlorosis, possesses genetic diversity, and the SNP markers were highly efficient for discriminating genetically close organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strains of Xylella fastidiosa, isolated from sweet orange trees (Citrus sinensis) and coffee trees (Coffea arabica) with symptoms of citrus variegated chlorosis and Requeima do Cafe, respectively, were indistinguish able based on repetitive extragenic palindromic polymerase chain reaction (PCR) and enterobacterial repetitive intergenic consensus PCR assays. These strains were also indistinguishable with a previously described PCR assay that distinguished the citrus strains from all other strains of Xylella fastidiosa. Because we were not able to document any genomic diversity in our collection of Xylella fastidiosa strains isolated from diseased citrus, the observed gradient of increasing disease severity from southern to northern regions of São Paulo State is unlikely due to the presence of significantly different strains of the pathogen in the different regions. When comparisons were made to reference strains of Xylella fastidiosa isolated from other hosts using these methods, four groups were consistently identified consistent with the hosts and regions from which the strains originated: citrus and coffee, grapevine and almond, mulberry, and elm, plum, and oak. Independent results from random amplified polymorphic DNA (RAPD) PCR assays were also consistent with these results; however, two of the primers tested in RAPD-PCR were able to distinguish the coffee and citrus strains. Sequence comparisons of a PCR product amplified from all strains of Xylella fastidiosa confirmed the presence of a CfoI polymorphism that can be used to distinguish the citrus strains from all others. The ability to distinguish Xylella fastidiosa strains from citrus and coffee with a PCR-based assay will be useful in epidemiological and etiological studies of this pathogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS) are two economically important diseases in Brazil caused by the bacterium Xylella fastidiosa. Strains of the bacterium isolated from the two plant hosts are very closely related, and the two diseases share sharpshooter insect vectors. In order to determine if citrus strains of X. fastidiosa could infect coffee and induce CLS disease, plant inoculations were performed. Plants of coffee, Coffea arabica 'Mundo Novo', grafted on Coffea canephora var, robusta 'Apuatao 2258' were mechanically inoculated with triply cloned strains of X. fastidiosa isolated from diseased coffee and citrus. Three months postinoculation, 5 of the 10 plants inoculated with CLS-X. fastidiosa and 1 of the 10 plants inoculated with CVC-X. fastidiosa gave positive enzyme-linked immunosorbent assay (ELISA) and/or polymerase chain reaction (PCR). Eight months postinoculation, another six plants inoculated with CVC-X. fastidiosa gave positive PCR results. The two X. fastidiosa strains were isolated from the inoculated plants and showed the same characteristics as the original clones by microscopy, ELISA, and PCR. None of the plants inoculated with sterile periwinkle wilt (PW) medium as controls gave positive reactions in diagnostic tests, and none developed disease symptoms. Six months postinoculation, seven plants inoculated with CLS-X. fastidiosn and eight inoculated with CVC-X. fastidiosa began to develop characteristic CLS symptoms, including apical and marginal leaf scorch, defoliation, and reductions of internode length, leaf size, and plant height, terminal clusters of small chlorotic and deformed leaves, and lateral shoot dieback. We have demonstrated that X, fastidiosa from citrus plants is pathogenic for coffee plants. This has important consequences for the management of CLS disease and has implications for the origin of citrus variegated chlorosis disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xylella fastidiosa causes citrus variegated chlorosis (CVC) disease in Brazil and Pierce's disease of grapevines in the United States. Both of these diseases cause significant production problems in the respective industries. The recent establishment of the glassy-winged sharpshooter in California has radically increased the threat posed by Pierces disease to California viticulture. Populations of this insect reach very high levels in citrus groves in California and move from the orchards into the vineyards, where they acquire inoculum and spread Pierce's disease in the vineyards. Here we show that strains of X. fastidiosa isolated from diseased citrus and coffee in Brazil can incite symptoms of Pierce's disease after mechanical inoculation into seven commercial Vitis vinifera varieties grown in Brazil and California. Thus, any future introduction of the CVC strains of X. fastidiosa into the United States would pose a threat to both the sweet orange and grapevine industries. Previous work has clearly shown that the strains of X. fastidiosa isolated from Pierce's disease- and CVC-affected plants are the most distantly related of all strains in the diverse taxon X. fastidiosa. The ability of citrus strains of X. fastidiosa to incite disease in grapevine is therefore surprising and creates an experimental system with which to dissect mechanisms used by X.,fastidiosa in plant colonization and disease development using the full genome sequence data that has recently become available for both the citrus and grapevine strains of this pathogen.