973 resultados para chromosome 1p


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The age distribution and incidence of loss of heterozygosity (LOH) of 1p and 19q was analyzed in 85 oligodendroglial tumors WHO II and III. The peak of tumor manifestation was in the age group of 35 to 55 years. There was no association between age at diagnosis and LOH incidence. We conclude that the prognostic effect of age on survival is not mediated by LOH 1p/19q.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The idiopathic inflammatory bowel diseases, Crohn’s disease (CD) and ulcerative colitis (UC), are chronic, frequently disabling diseases of the intestines. Segregation analyses, twin concordance, and ethnic differences in familial risks have established that CD and UC are complex, non-Mendelian, related genetic disorders. We performed a genome-wide screen using 377 autosomal markers, on 297 CD, UC, or mixed relative pairs from 174 families, 37% Ashkenazim. We observed evidence for linkage at 3q for all families (multipoint logarithm of the odds score (MLod) = 2.29, P = 5.7 × 10−4), with greatest significance for non-Ashkenazim Caucasians (MLod = 3.39, P = 3.92 × 10−5), and at chromosome 1p (MLod = 2.65, P = 2.4 × 10−4) for all families. In a limited subset of mixed families (containing one member with CD and another with UC), evidence for linkage was observed on chromosome 4q (MLod = 2.76, P = 1.9 × 10−4), especially among Ashkenazim. There was confirmatory evidence for a CD locus, overlapping IBD1, in the pericentromeric region of chromosome 16 (MLod = 1.69, P = 2.6 × 10−3), particularly among Ashkenazim (MLod = 1.51, P = 7.8 × 10−3); however, positive MLod scores were observed over a very broad region of chromosome 16. Furthermore, evidence for epistasis between IBD1 and chromosome 1p was observed. Thirteen additional loci demonstrated nominal (MLod > 1.0, P < 0.016) evidence for linkage. This screen provides strong evidence that there are several major susceptibility loci contributing to the genetic risk for CD and UC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hybrid mice carrying oncogenic transgenes afford powerful systems for investigating loss of heterozygosity (LOH) in tumors. Here, we apply this approach to a neoplasm of key importance in human medicine: mammary carcinoma. We performed a whole genome search for LOH using the mouse mammary tumor virus/v-Ha-ras mammary carcinoma model in female (FVB/N × Mus musculus castaneus)F1 mice. Mammary tumors developed as expected, as well as a few tumors of a second type (uterine leiomyosarcoma) not previously associated with this transgene. Genotyping of 94 anatomically independent tumors revealed high-frequency LOH (≈38%) for markers on chromosome 4. A marked allelic bias was observed, with M. musculus castaneus alleles almost exclusively being lost. No evidence of genomic imprinting effects was noted. These data point to the presence of a tumor suppressor gene(s) on mouse chromosome 4 involved in mammary carcinogenesis induced by mutant H-ras expression, and for which a significant functional difference may exist between the M. musculus castaneus and FVB/N alleles. Provisional subchromosomal localization of this gene, designated Loh-3, can be made to a distal segment having syntenic correspondence to human chromosome 1p; LOH in this latter region is observed in several human malignancies, including breast cancers. Evidence was also obtained for a possible second locus associated with LOH with less marked allele bias on proximal chromosome 4.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Deletion of the short arm of human chromosome 1 is the most common cytogenetic abnormality observed in neuroblastoma. To characterize the region of consistent deletion, we performed loss of heterozygosity (LOH) studies on 122 neuroblastoma tumor samples with 30 distal chromosome 1p polymorphisms. LOH was detected in 32 of the 122 tumors (26%). A single region of LOH, marked distally by D1Z2 and proximally by D1S228, was detected in all tumors demonstrating loss. Also, cells from a patient with a constitutional deletion of 1p36, and from a neuroblastoma cell line with a small 1p36 deletion, were analyzed by fluorescence in situ hybridization. Cells from both sources had interstitial deletions of 1p36.2-36.3 which overlapped the consensus region of LOH defined by the tumors. Interstitial deletion in the constitutional case was confirmed by allelic loss studies using the panel of polymorphic markers. Four proposed candidate genes--DAN, ID3 (heir-1), CDC2L1 (p58), and TNFR2--were shown to lie outside of the consensus region of allelic loss, as defined by the above deletions. These results more precisely define the location of a neuroblastoma suppressor gene within 1p36.2-36.3, eliminating 33 centimorgans of proximal 1p36 from consideration. Furthermore, a consensus region of loss, which excludes the four leading candidate genes, was found in all tumors with 1p36 LOH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solar keratoses (SKs) are induced by exposure to UV radiation and are capable of undergoing transformation to squamous cell carcinoma (SCC).1 The two main factors influencing the occurrence of SK are the sensitivity of the skin to sunlight and the total duration of solar exposure. These factors are responsible for the high incidence of SK in Australia. Although the influence of genetic factors is not defined, there is evidence that the gene encoding the enzyme, glutathione S-transferase, may be implicated in cancer predisposition and therefore SK. Glutathione S-transferase Mu-1 (GSTM1) is an isoenzyme involved in the detoxification of carcinogens. The GSTM1 protein is completely absent in approximately 50% of white persons. This absence is caused by a homozygous gene deletion on chromosome 1p resulting in a null genotype.2 Katoh3 showed that the frequency of the GSTM1 null genotype was significantly higher in 85 patients with urothelial cancer (61.2%; p < 0.05), suggesting that the null genotype may increase cancer susceptibility. This finding was supported by Lafuente et al.4 who found evidence that persons who lack the GSTM1 gene have approximately twice the chance of experiencing malignant melanoma. Further research in the United Kingdom found that patients with two or more skin tumors of different types, basal cell carcinoma (BCC) and SCC, had a significantly higher frequency of GSTM1 null genotypes than controls (71%; p = 0.033). However the GSTM1 genotype in patients with only SCC was not excessive in this population.5 Persons residing in northern Australia have the highest incidence of nonmelanoma skin cancer (SCC and BCC) in the world6 and receive far greater solar exposure than persons residing in the United Kingdom. It is possible that the GSTM1 null genotype may affect susceptibility to SK, which may act as SCC precursors, in Australians exposed to these high levels of solar radiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mineral density (BMD) and poor bone quality. Peak bone density is achieved by the third decade of life, after which bone is maintained by a balanced cycle of bone resorption and synthesis. Age-related bone loss occurs as the bone resorption phase outweighs the bone synthesis phase of bone metabolism. Heritability accounts for up to 90% of the variability in BMD. Chromosomal loci including 1p36, 2p22-25, 11q12-13, parathyroid hormone receptor type 1 (PTHR1), interleukin-6 (IL-6), interleukin 1 alpha (IL-1α) and type II collagen A1/vitamin D receptor (COL11A1/VDR) have been linked or shown suggestive linkage with BMD in other populations. To determine whether these loci predispose to low BMD in the Irish population, we investigated 24 microsatellite markers at 7 chromosomal loci by linkage studies in 175 Irish families of probands with primary low BMD (T-score ≤ -1.5). Nonparametric analysis was performed using the maximum likelihood variance estimation and traditional Haseman-Elston tests on the Mapmaker/Sibs program. Suggestive evidence of linkage was observed with lumbar spine BMD at 2p22-25 (maximum LOD score 2.76) and 11q12-13 (MLS 2.55). One region, 1p36, approached suggestive linkage with femoral neck BMD (MLS 2.17). In addition, seven markers achieved LOD scores > 1.0, D2S149, D11S1313, D11S987, D11S1314 including those encompassing the PTHR1 (D3S3559, D3S1289) for lumbar spine BMD and D2S149 for femoral neck BMD. Our data suggest that genes within a these chromosomal regions are contributing to a predisposition to low BMD in the Irish population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ionizing radiation is the most recognized risk factor for meningioma in pediatric long-term cancer survivors. Information in this rare setting is exceptional. We report the clinical and cytogenetic findings in a radiation-induced atypical meningioma following treatment for desmoplastic medulloblastoma in a child. This is the second study to describe the cytogenetic aspects on radiation-induced meningiomas in children. Chromosome banding analysis revealed a 46, XX, t(1;3)(p22;q12), del(1)(p?)[8]/46, XX[12]. Loss of chromosome 1p as a consequence of irradiation has been proposed to be more important in the development of secondary meningiomas in adults. Deletions in the short arm of chromosome 1 also appear to be a shared feature in both pediatric cases so far analyzed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The molecular pathogenesis of various categories of breast cancer (BC) has been well described, but surprisingly few reports have appeared on analysis of somatic mutations in bilateral BC. We have performed a polymerase chain reaction (PCR)-driven investigation of chromosomal regions showing common loss of heterozygosity (LOH) in 23 cases (46 rumors) from patients diagnosed with bilateral BC, LOH was observed in 15/46 (33%) informative tumors for chromosome 1p, 5/32 (16%) for 5q, 12/44 (27%) for 11q, 15/40 (38%) for 13q and 4/24 (17%) for 17p. These values are within the range of interlaboratory variations reported fur unilateral BC, There was no strong evidence for concordance of LOH within the same patient for any of the chromosomal loci tested. Atypical for breast carcinomas, 7/46 (15%) turners accumulated a high frequency (ranging from 11 to 29%) of shortened dinucleotide CA repeats, implying microsatellite instability (MI). Further analysis with the highly informative BAT-26 marker allowed for the classification of two of these tumors as having a replication error positive (RER+/MSI-H) phenotype, whereas the remaining five carcinomas harbored so-called borderline MI. Thus an involvement of both RER+ and borderline MI appears to be a distinct feature of bilateral breast carcinomas compared to unilateral lesions. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The black muntjac (Muntiacus crinifrons, 2n = 8 female/9 male) is a critically endangered mammalian species that is confined to a narrow region of southeastern China. Male black muntjacs have an astonishing X1X2Y1Y2Y3 sex chromosome system, unparalleled i

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With respect to localization, oligodendrogliomas are characterized by a marked preponderance of the cerebral hemispheres. Outside these typical sites, any tumor histopathologically reminiscent of oligodendroglioma a priori is likely to represent one of its morphological mimics, including clear cell ependymoma, neurocytoma, pilocytic astrocytoma or glioneuronal tumors. This is particularly relevant as several of the latter are in principle curable by surgery. Among extrahemispherical sites, bona fide oligodendroglioma - as characterized by loss of heterozygosity (LOH) of chromosome arms 1p and 19q - so far has not been documented to occur in the brain stem. Here, we report the case of a 55-year-old female patient with an anaplastic oligodendroglioma (WHO grade III) of the brain stem and cerebellum diagnosed by stereotactic biopsy and featuring combined LOH of 1p and 19q. A morphological peculiarity was a population of interspersed tumor giant cells, a phenomenon that has been referred to as polymorphous oligodendroglioma. Our findings confirm the notion that - although very infrequently - true oligodendrogliomas do occur in the infratentorial compartment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Schizosaccharomyces pombe dhp1+ gene is an ortholog of the Saccharomyces cerevisiae RAT1 gene, which encodes a nuclear 5′→3′ exoribonuclease, and is essential for cell viability. To clarify the cellular functions of the nuclear 5′→3′ exoribonuclease, we isolated and characterized a temperature-sensitive mutant of dhp1 (dhp1-1 mutant). The dhp1-1 mutant showed nuclear accumulation of poly(A)+ RNA at the restrictive temperature, as was already reported for the rat1 mutant. Interestingly, the dhp1-1 mutant exhibited aberrant chromosome segregation at the restrictive temperature. The dhp1-1 cells frequently contained condensed chromosomes, most of whose sister chromatids failed to separate during mitosis despite normal mitotic spindle elongation. Finally, chromosomes were displaced or unequally segregated. As similar mitotic defects were also observed in Dhp1p-depleted cells, we concluded that dhp1+ is required for proper chromosome segregation as well as for poly(A)+ RNA metabolism in fission yeast. Furthermore, we isolated a multicopy suppressor of the dhp1-1 mutant, referred to as din1+. We found that the gene product of dhp1-1 was unstable at high temperatures, but that reduced levels of Dhp1-1p could be suppressed by overexpressing Din1p at the restrictive temperature. Thus, Din1p may physically interact with Dhp1p and stabilize Dhp1p and/or restore its activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Professionals working in disability services often encounter clients who have chromosome disorders such as Williams, Angelman or Down syndromes. As chromosome testing becomes increasingly sophisticated, however, more people are being diagnosed with very rare chromosome disorders that are identified not by a syndrome name, but rather by a description of the number, size and shape of their chromosomes (called the karyotype) or by a report of chromosome losses and gains detected through an advanced process known as microarray-based comparative genomic hybridisation (array CGH). For practitioners who work with individuals with rare chromosome disorders and their families, a basic level of knowledge about the evolving field of genetics, as well as specific knowledge about chromosome abnormalities, is essential since they must be able to demonstrate their knowledge and skills to clients (Simic & Turk, 2004). In addition, knowledge about the developmental consequences of various rare chromosome disorders is important for guiding prognoses, expectations, decisions and interventions. The current article provides information that aims to help practitioners work more effectively with this population. It begins by presenting essential information about chromosomes and their numerical and structural abnormalities and then considers the developmental consequences of rare chromosome disorders through a critical review of relevant literature.