959 resultados para cell division


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multiscale modeling is emerging as one of the key challenges in mathematical biology. However, the recent rapid increase in the number of modeling methodologies being used to describe cell populations has raised a number of interesting questions. For example, at the cellular scale, how can the appropriate discrete cell-level model be identified in a given context? Additionally, how can the many phenomenological assumptions used in the derivation of models at the continuum scale be related to individual cell behavior? In order to begin to address such questions, we consider a discrete one-dimensional cell-based model in which cells are assumed to interact via linear springs. From the discrete equations of motion, the continuous Rouse [P. E. Rouse, J. Chem. Phys. 21, 1272 (1953)] model is obtained. This formalism readily allows the definition of a cell number density for which a nonlinear "fast" diffusion equation is derived. Excellent agreement is demonstrated between the continuum and discrete models. Subsequently, via the incorporation of cell division, we demonstrate that the derived nonlinear diffusion model is robust to the inclusion of more realistic biological detail. In the limit of stiff springs, where cells can be considered to be incompressible, we show that cell velocity can be directly related to cell production. This assumption is frequently made in the literature but our derivation places limits on its validity. Finally, the model is compared with a model of a similar form recently derived for a different discrete cell-based model and it is shown how the different diffusion coefficients can be understood in terms of the underlying assumptions about cell behavior in the respective discrete models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cardiovascular disease represents a major clinical problem affecting a significant proportion of the world's population and remains the main cause of death in the UK. The majority of therapies currently available for the treatment of cardiovascular disease do not cure the problem but merely treat the symptoms. Furthermore, many cardioactive drugs have serious side effects and have narrow therapeutic windows that can limit their usefulness in the clinic. Thus, the development of more selective and highly effective therapeutic strategies that could cure specific cardiovascular diseases would be of enormous benefit both to the patient and to those countries where healthcare systems are responsible for an increasing number of patients. In this review, we discuss the evidence that suggests that targeting the cell cycle machinery in cardiovascular cells provides a novel strategy for the treatment of certain cardiovascular diseases. Those cell cycle molecules that are important for regulating terminal differentiation of cardiac myocytes and whether they can be targeted to reinitiate cell division and myocardial repair will be discussed as will the molecules that control vascular smooth muscle cell (VSMC) and endothelial cell proliferation in disorders such as atherosclerosis and restenosis. The main approaches currently used to target the cell cycle machinery in cardiovascular disease have employed gene therapy techniques. We will overview the different methods and routes of gene delivery to the cardiovascular system and describe possible future drug therapies for these disorders. Although the majority of the published data comes from animal studies, there are several instances where potential therapies have moved into the clinical setting with promising results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The distributions of times to first cell division were determined for populations of Escherichia coli stationary-phase cells inoculated onto agar media. This was accomplished by using automated analysis of digital images of individual cells growing on agar and calculation of the "box area ratio." Using approximately 300 cells per experiment, the mean time to first division and standard deviation for cells grown in liquid medium at 37 degrees C and inoculated on agar and incubated at 20 degrees C were determined as 3.0 h and 0.7 h, respectively. Distributions were observed to tail toward the higher values, but no definitive model distribution was identified. Both preinoculation stress by heating cultures at 50 degrees C and postinoculation stress by growth in the presence of higher concentrations of NaCl increased mean times to first division. Both stresses also resulted in an increase in the spread of the distributions that was proportional to the mean division time, the coefficient of variation being constant at approximately 0.2 in all cases. The "relative division time," which is the time to first division for individual cells expressed in terms of the cell size doubling time, was used as measure of the "work to be done" to prepare for cell division. Relative division times were greater for heat-stressed cells than for those growing under osmotic stress.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A method is presented for determining the time to first division of individual bacterial cells growing on agar media. Bacteria were inoculated onto agar-coated slides and viewed by phase-contrast microscopy. Digital images of the growing bacteria were captured at intervals and the time to first division estimated by calculating the "box area ratio". This is the area of the smallest rectangle that can be drawn around an object, divided by the area of the object itself. The box area ratios of cells were found to increase suddenly during growth at a time that correlated with cell division as estimated by visual inspection of the digital images. This was caused by a change in the orientation of the two daughter cells that occurred when sufficient flexibility arose at their point of attachment. This method was used successfully to generate lag time distributions for populations of Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa, but did not work with the coccoid organism Staphylococcus aureus. This method provides an objective measure of the time to first cell division, whilst automation of the data processing allows a large number of cells to be examined per experiment. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ability of the cardiac myocyte to divide ceases shortly after birth. Thus, following severe injury, e.g., during myocardial infarction, the mature heart is unable to regenerate new tissue to replace the dead or damaged tissue. The identification of the molecules controlling the cessation of myocyte cell division may lead to therapeutic strategies which aim to re-populate the damaged myocardial area. Hence, we have determined the cell cycle profile, expressions and activities of the cyclin-dependent kinase inhibitors (CDKIs), p21CIP1 and p27KIP1, during rat ventricular myocyte development. Fluorescent activated cell sorting (FACS) analyses showed the percentage of S phase myocytes to be decreased significantly throughout development, concomitant with a significant increase in the percentage of G0/G1 and G2/M phase cells. The expression of p21CIP1 and p27KIP1 increased significantly throughout cardiac development and complexed differentially with a number of cyclins and CDKs. Furthermore, an adult myocyte extract reduced neonatal myocyte CDK2 kinase activity significantly (>30%, p<0.05) whereas immunodepletion of p21CIP1 from adult lysates restored CDK2 kinase activity. Thus, p21CIP1 and p27KIP1 may be important for the withdrawal of cardiac myocytes from the cell cycle and for maintaining the G0/G1 and G2/M phase blockades.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Like most other cells in the body, foetal and neonatal cardiac myocytes are able to divide and proliferate. However, the ability of these cells to undergo cell division decreases progressively during development such that adult myocytes are unable to divide. A major problem arising from this inability of adult cardiac myocytes to proliferate is that the mature heart is unable to regenerate new myocardial tissue following severe injury, e.g. infarction, which can lead to compromised cardiac pump function and even death. Studies in proliferating cells have identified a group of genes and proteins that controls cell division. These proteins include cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors (CDKIs), which interact with each other to form complexes that are essential for controlling normal cell cycle progression. A variety of other proteins, e.g. the retinoblastoma protein (pRb) and members of the E2F family of transcription factors, also can interact with, and modulate the activities of, these complexes. Despite the major role that these proteins play in other cell types, little was known until recently about their existence and activities in immature (proliferating) or mature (non-proliferating) cardiac myocytes. The reason(s) why cardiac myocytes lose their ability to divide during development remains unknown, but if strategies were developed to understand the mechanisms underlying cardiac myocyte growth, it could open up new avenues for the treatment of cardiovascular disease. In this article, we shall review the function of the cell cycle machinery and outline some of our recent findings pertaining to the involvement of the cell cycle in modulating cardiac myocyte growth and hypertrophy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the process of lateral organ development after plant decapitation, cell division and differentiation occur in a balanced manner initiated by specific signaling, which triggers the reentrance into the cell cycle. Here, we investigated short-term variations in the content of some endogenous signals, such as auxin, cytokinins (Cks), and other mitogenic stimuli (sucrose and glutamate), which are likely correlated with the cell cycle reactivation in the axillary bud primordium of pineapple nodal segments. Transcript levels of cell cycle-associated genes, CycD2;1, and histone H2A were analyzed. Nodal segments containing the quiescent axillary meristem cells were cultivated in vitro during 24 h after the apex removal and de-rooting. From the moment of stem apex and root removal, decapitated nodal segment (DNS) explants showed a lower indol-3-acetic acid (IAA) concentration than control explants, and soon after, an increase of endogenous sucrose and iP-type Cks were detected. The decrease of IAA may be the primary signal for cell cycle control early in G1 phase, leading to the upregulation of CycD2;1 gene in the first h. Later, the iP-type Cks and sucrose could have triggered the progression to S-phase since there was an increase in H2A expression at the eighth h. DNS explants revealed substantial increase in Z-type Cks and glutamate from the 12th h, suggesting that these mitogens could also operate in promoting pineapple cell cycle progression. We emphasize that the use of non-synchronized tissue rather than synchronous cell suspension culture makes it more difficult to interpret the results of a dynamic cell division process. However, pineapple nodal segments cultivated in vitro may serve as an interesting model to shed light on apical dominance release and the reentrance of quiescent axillary meristem cells into the cell cycle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

P>A cDNA encoding a small lysine-rich protein of unknown function was identified in a tobacco (Nicotiana tabacum) stigma/style suppression subtractive hybridization cDNA library. After its characterization, the corresponding gene was designated stigma/style cell cycle inhibitor 1 (SCI1). Fluorescence microscopy with an SCI1-GFP protein fusion demonstrated its nuclear localization, which was confined to the interchromatic region. Real-time RT-PCR and in situ hybridization experiments showed that SCI1 is stigma/style-specific and developmentally regulated. SCI1 RNAi knockdown and overexpression plants had stigmas/styles with remarkably enlarged and reduced areas, respectively, which was attributable to differences in cell numbers. These results indicate that SCI1 is a tissue-specific negative cell cycle regulator. The differences in cell division had an effect on the timing of the differentiation of the stigmatic papillar cells, suggesting that their differentiation is coupled to stigma cell divisions. This is consistent with a role for SCI1 in triggering differentiation through cell proliferation control. Our results revealed that SCI1 is a novel tissue-specific gene that controls cell proliferation/differentiation, probably as a component of a developmental signal transduction pathway.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Laser scanning confocal microscopy and TEM were used to study the morphology of secondary plastids in algae of the genus Mallomonas (Synurophyceae). At interphase, Mallomonas splendens (G. S. West) Playfair, M. rasilis Dürrschm., M. striata Asmund, and M. adamas K. Harris et W. H. Bradley contained a single H-shaped plastid consisting of two large lobes connected by a narrow isthmus. Labeling of DNA revealed a necklace-like arrangement of plastid nucleoids at the periphery of the M. splendens plastid and a less-patterned array in M. rasilis. The TEM of M. splendens and M. rasilis showed an electron-dense belt surrounding the plastid isthmus in interphase cells; this putative plastid-dividing ring (PD ring) was adpressed to the inner pair of the four plastid membranes, suggesting that it is homologous to the PD ring of green and red plastids. The PD ring did not contain actin (indicated by lack of staining with phalloidin) and displayed filaments or tubules of 5–10 nm in diameter that may be homologous to the tubules described in red algal PD rings. Confocal microscopy of chl autofluorescence from M. splendens showed that the plastid isthmus was severed as mitosis began, giving rise to two single-lobed daughter plastids, which, as mitosis and cell division progressed, separated from one another and then each constricted to form the H-shaped plastids of daughter cells. Similar plastid division cycles were observed in M. rasilis and M. adamas; however, the plastid isthmus of M. striata was retained throughout most of cell division and was eventually severed by the cell cleavage furrow.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mitochondria, the cellular powerplants, are essential to eukaryotic life and have evolved from free-living bacteria. Using molecular biology, this thesis has deepened our understanding of the evolution of mitochondrial division through the study of two, key bacterially-derived proteins in the slime mold, dictyostelium.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background

Imatinib mesylate is currently the drug of choice to treat chronic myeloid leukemia. However, patient resistance and cytotoxicity make secondary lines of treatment, such as omacetaxine mepesuccinate, a necessity. Given that drug cytotoxicity represents a major problem during treatment, it is essential to understand the biological pathways affected to better predict poor drug response and prioritize a treatment regime.
Methods

We conducted cell viability and gene expression assays to determine heritability and gene expression changes associated with imatinib and omacetaxine treatment of 55 non-cancerous lymphoblastoid cell lines, derived from 17 pedigrees. In total, 48,803 transcripts derived from Illumina Human WG-6 BeadChips were analyzed for each sample using SOLAR, whilst correcting for kinship structure.
Results

Cytotoxicity within cell lines was highly heritable following imatinib treatment (h2 = 0.60-0.73), but not omacetaxine treatment. Cell lines treated with an IC20 dose of imatinib or omacetaxine showed differential gene expression for 956 (1.96%) and 3,892 transcripts (7.97%), respectively; 395 of these (0.8%) were significantly influenced by both imatinib and omacetaxine treatment. k-means clustering and DAVID functional annotation showed expression changes in genes related to kinase binding and vacuole-related functions following imatinib treatment, whilst expression changes in genes related to cell division and apoptosis were evident following treatment with omacetaxine. The enrichment scores for these ontologies were very high (mostly >10).
Conclusions

Induction of gene expression changes related to different pathways following imatinib and omacetaxine treatment suggests that the cytotoxicity of such drugs may be differentially tolerated by individuals based on their genetic background.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The different potential of initiated and non-initiated urinary bladder mucosa (UBM) to develop neoplasia was quantitatively evaluated in the male Wistar rat. Initiation of carcinogenesis was accomplished with N-butyl-N-(4- hydroxybutyl)-nitrosamine (BBN). Stimuli for cell proliferation and apoptosis were obtained by exposure followed by withdrawal of 3% Uracil in the diet. The proliferation index (PI) was estimated in UBM immunostained for the proliferating nuclear cell antigen (PCNA). The apoptotic index (AI) and the density of papillary/nodular hyperplasia (PNH) were estimated in hematoxilin- eosin stained sections. PNH was the main proliferative response to the mechanical irritation by uracil, irrespective of previous initiation with BBN. Uracil exposure induced higher PI and PNH density in the initiated rats. After uracil withdrawal, there was a significant increase of the AI in both uracil-treated groups, which correlated well to the respective PNH density. However, at the end of the experiment, PNH incidence and density were significantly higher in the BBN-initiated mucosa, which also presented 18% incidence of papillomas and 27% of carcinomas. Therefore, under prolonged uracil calculi trauma, the UBM of BBN-initiated Wistar rats gives rise to epithelial proliferative lesions that progress to neoplasia through acquired resistance to apoptosis.