826 resultados para brain disease


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to discuss and test the hypothesis raised by Fusar-Poli [Fusar-Poli P. Can neuroimaging prove that schizophrenia is a brain disease? A radical hypothesis. Medical Hypotheses in press, corrected proof] that ""on the basis of the available imaging literature there is no consistent evidence to reject the radical and provocative hypothesis that schizophrenia is not a brain disease"". To achieve this goal, all meta-analyses on `fMRI and schizophrenia` published during the current decade and indexed in Pubmed were summarized, as much as some other useful information, e.g., meta-analyses on genetic risk factors. Our main conclusion is that the literature fully supports the hypothesis that schizophrenia is a syndrome (not a disease) associated with brain abnormalities, despite the fact that there is no singular and reductionist pathway from the nosographic entity (schizophrenia) to its causes. This irreducibility is due to the fact that the syndrome has more than one dimension (e.g., cognitive, psychotic and negative) and each of them is related to abnormalities in specific neuronal networks. A psychiatric diagnosis is a statistical procedure; these dimensions are not identically represented in each diagnosticated case and this explains the existence of more than one pattern of brain abnormalities related to schizophrenia. For example, chronification is associated with negativism while the first psychotic episode is not; in that sense, the same person living with schizophrenia may reveal different symptoms and fMRI patterns along the course of his life, and this is precisely what defines schizophrenia since the time when it was called Dementia Praecox (first by pick then by Kraepelin). It is notable that 100% of the collected meta-analyses on `fMRI and schizophrenia` reveal positive findings. Moreover, all meta-analyses that found positive associations between schizophrenia and genetic risk factors have to do with genes (SNPs) especially activated in neuronal tissue of the central nervous system (CNS), suggesting that, to the extent these polymorphisms are related to schizophrenia`s etiology, they are also related to abnormal brain activity. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The metabolic syndrome and type 1 diabetes are associated with brain alterations such as cognitive decline brain infarctions, atrophy, and white matter lesions. Despite the importance of these alterations, their pathomechanism is still poorly understood. This study was conducted to investigate brain glucose and metabolites in healthy individuals with an increased cardiovascular risk and in patients with type 1 diabetes in order to discover more information on the nature of the known brain alterations. We studied 43 20- to 45-year-old men. Study I compared two groups of non-diabetic men, one with an accumulation of cardiovascular risk factors and another without. Studies II to IV compared men with type 1 diabetes (duration of diabetes 6.7 ± 5.2 years, no microvascular complications) with non-diabetic men. Brain glucose, N-acetylaspartate (NAA), total creatine (tCr), choline, and myo-inositol (mI) were quantified with proton magnetic resonance spectroscopy in three cerebral regions: frontal cortex, frontal white matter, thalamus, and in cerebellar white matter. Data collection was performed for all participants during fasting glycemia and in a subgroup (Studies III and IV), also during a hyperglycemic clamp that increased plasma glucose concentration by 12 mmol/l. In non-diabetic men, the brain glucose concentration correlated linearly with plasma glucose concentration. The cardiovascular risk group (Study I) had a 13% higher plasma glucose concentration than the control group, but no difference in thalamic glucose content. The risk group thus had lower thalamic glucose content than expected. They also had 17% increased tCr (marker of oxidative metabolism). In the control group, tCr correlated with thalamic glucose content, but in the risk group, tCr correlated instead with fasting plasma glucose and 2-h plasma glucose concentration in the oral glucose tolerance test. Risk factors of the metabolic syndrome, most importantly insulin resistance, may thus influence brain metabolism. During fasting glycemia (Study II), regional variation in the cerebral glucose levels appeared in the non-diabetic subjects but not in those with diabetes. In diabetic patients, excess glucose had accumulated predominantly in the white matter where the metabolite alterations were also the most pronounced. Compared to the controls values, the white matter NAA (marker of neuronal metabolism) was 6% lower and mI (glia cell marker) 20% higher. Hyperglycemia is therefore a potent risk factor for diabetic brain disease and the metabolic brain alterations may appear even before any peripheral microvascular complications are detectable. During acute hyperglycemia (Study III), the increase in cerebral glucose content in the patients with type 1 diabetes was, dependent on brain region, between 1.1 and 2.0 mmol/l. An every-day hyperglycemic episode in a diabetic patient may therefore as much as double brain glucose concentration. While chronic hyperglycemia had led to accumulation of glucose in the white matter, acute hyperglycemia burdened predominantly the gray matter. Acute hyperglycemia also revealed that chronic fluctuation in blood glucose may be associated with alterations in glucose uptake or in metabolism in the thalamus. The cerebellar white matter appeared very differently from the cerebral (Study IV). In the non-diabetic men it contained twice as much glucose as the cerebrum. Diabetes had altered neither its glucose content nor the brain metabolites. The cerebellum seems therefore more resistant to the effects of hyperglycemia than is the cerebrum.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chronic liver failure leads to hyperammonemia and consequently increased brain ammonia concentrations, resulting in hepatic encephalopathy. When the liver fails to regulate ammonia concentrations, the brain, devoid of a urea cycle, relies solely on the amidation of glutamate to glutamine through glutamine synthetase, to efficiently clear ammonia. Surprisingly, under hyperammonemic conditions, the brain is not capable of increasing its capacity to remove ammonia, which even decreases in some regions of the brain. This non-induction of glutamine synthetase in astrocytes could result from possible limiting substrates or cofactors for the enzyme, or an indirect effect of ammonia on glutamine synthetase expression. In addition, there is evidence that nitration of the enzyme resulting from exposure to nitric oxide could also be implicated. The present review summarizes these possible factors involved in limiting the increase in capacity of glutamine synthetase in brain, in chronic liver failure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glutamatergic dysfunction has been suggested to play an important role in the pathogenesis of hepatic encephalopathy (HE) in acute liver failure (ALF). Increased extracellular brain glutamate concentrations have consistently been described in different experimental animal models of ALF and in patients with increased intracranial pressure due to ALF. High brain ammonia levels remain the leading candidate in the pathogenesis of HE in ALF and studies have demonstrated a correlation between ammonia and increased concentrations of extracellular brain glutamate both clinically and in experimental animal models of ALE Inhibition of glutamate uptake or increased glutamate release from neurons and/or astrocytes could cause an increase in extracellular glutamate. This review analyses the effect of ammonia on glutamate release from (and uptake into) both neurons and astrocytes and how these pathophysiological mechanisms may be involved in the pathogenesis of HE in ALF.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mild hypothermia (32 degrees C-35 degrees C) reduces intracranial pressure in patients with acute liver failure and may offer an effective adjunct therapy in the management of these patients. Studies in experimental animals suggest that this beneficial effect of hypothermia is the result of a decrease in blood-brain ammonia transfer resulting in improvement in brain energy metabolism and normalization of glutamatergic synaptic regulation. Improvement in brain energy metabolism by hypothermia may result from a reduction in ammonia-induced decrease of brain glucose (pyruvate) oxidation. Restoration of normal glutamatergic synaptic regulation by hypothermia may be the consequence of the removal of ammonia-induced decreases in expression of astrocytic glutamate transporters resulting in normal glutamate neurotransmitter inactivation in brain. Randomized controlled clinical trials of hypothermia are required to further evaluate its clinical impact.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of chronic liver insufficiency resulting from end-to-side portacaval anastomosis (PCA) on glutamine synthetase (GS) activities, protein and gene expression were studied in brain, liver and skeletal muscle of male adult rats. Four weeks following PCA, activities of GS in cerebral cortex and cerebellum were reduced by 32\% and 37\% (p<0.05) respectively whereas GS activities in muscle were increased by 52\% (p<0.05). GS activities in liver were decreased by up to 90\% (p<0.01), a finding which undoubtedly reflects the loss of GS-rich perivenous hepatocytes following portal-systemic shunting. Immunoblotting techniques revealed no change in GS protein content of brain regions or muscle but a significant loss in liver of PCA rats. GS mRNA determined by semi-quantitative RT-PCR was also significantly decreased in the livers of PCA rats compared to sham-operated controls. These findings demonstrate that PCA results in a loss of GS gene expression in the liver and that brain does not show a compensatory induction of enzyme activity, rendering it particularly sensitive to increases in ammonia in chronic liver failure. The finding of a post-translational increase of GS in muscle following portacaval shunting suggests that, in chronic liver failure, muscle becomes the major organ responsible for the removal of excess blood-borne ammonia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Elevated concentrations of ammonia in the brain as a result of hyperammonemia leads to cerebral dysfunction involving a spectrum of neuropsychiatric and neurological symptoms (impaired memory, shortened attention span, sleep-wake inversions, brain edema, intracranial hypertension, seizures, ataxia and coma). Many studies have demonstrated ammonia as a major player involved in the neuropathophysiology associated with liver failure and inherited urea cycle enzyme disorders. Ammonia in solution is composed of a gas (NH(3)) and an ionic (NH(4) (+)) component which are both capable of crossing plasma membranes through diffusion, channels and transport mechanisms and as a result have a direct effect on pH. Furthermore, NH(4) (+) has similar properties as K(+) and, therefore, competes with K(+) on K(+) transporters and channels resulting in a direct effect on membrane potential. Ammonia is also a product as well as a substrate for many different biochemical reactions and consequently, an increase in brain ammonia accompanies disturbances in cerebral metabolism. These direct effects of elevated ammonia concentrations on the brain will lead to a cascade of secondary effects and encephalopathy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Huntington's disease (HD) is a neurodegenerative disorder, involving psychiatric, cognitive and motor symptoms, caused by a CAG-repeat expansion encoding an extended polyglutamine tract in the huntingtin protein. Oxidative stress and excitotoxicity have previously been implicated in the pathogenesis of HD. We hypothesized that N-acetylcysteine (NAC) may reduce both excitotoxicity and oxidative stress through its actions on glutamate reuptake and antioxidant capacity. The R6/1 transgenic mouse model of HD was used to investigate the effects of NAC on HD pathology. It was found that chronic NAC administration delayed the onset and progression of motor deficits in R6/1 mice, while having an antidepressant-like effect on both R6/1 and wild-type mice. A deficit in the astrocytic glutamate transporter protein, GLT-1, was found in R6/1 mice. However, this deficit was not ameliorated by NAC, implying that the therapeutic effect of NAC is not due to rescue of the GLT-1 deficit and associated glutamate-induced excitotoxicity. Assessment of mitochondrial function in the striatum and cortex revealed that R6/1 mice show reduced mitochondrial respiratory capacity specific to the striatum. This deficit was rescued by chronic treatment with NAC. There was a selective increase in markers of oxidative damage in mitochondria, which was rescued by NAC. In conclusion, NAC is able to delay the onset of motor deficits in the R6/1 model of Huntington's disease and it may do so by ameliorating mitochondrial dysfunction. Thus, NAC shows promise as a potential therapeutic agent in HD. Furthermore, our data suggest that NAC may also have broader antidepressant efficacy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Preventive neuroradiology is a new concept supported by growing literature. The main rationale of preventive neuroradiology is the application of multimodal brain imaging toward early and subclinical detection of brain disease and subsequent preventive actions through identification of modifiable risk factors. An insightful example of this is in the area of age-related cognitive decline, mild cognitive impairment, and dementia with potentially modifiable risk factors such as obesity, diet, sleep, hypertension, diabetes, depression, supplementation, smoking, and physical activity. In studying this link between lifestyle and cognitive decline, brain imaging markers may be instrumental as quantitative measures or even indicators of early disease. The purpose of this article is to provide an overview of the major studies reflecting how lifestyle factors affect the brain and cognition aging. In this hot topics review, we will specifically focus on obesity and physical activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Brain disease is an important cause of neurologic deficits in small ruminants, however few MRI features have been described. The aim of this retrospective, case series study was to describe MRI characteristics in a group of small ruminants with confirmed brain disease. A total of nine small ruminants (six sheep and three goats) met inclusion criteria. All had neurologic disorders localized to the brain and histopathologic confirmation. In animals with toxic-metabolic diseases, there were bilaterally symmetric MRI lesions affecting either the gray matter (one animal with polioencephalomalacia) or the white matter (two animals with enterotoxemia). In animals with suppurative inflammation, asymmetric focal brainstem lesions were present (two animals with listeric encephalitis), or lesions typical of an intra-axial (one animal) or dural abscess (one animal), respectively. No MRI lesions were detected in one animal with suspected viral cerebellitis and one animal with parasitic migration tracts. No neoplastic or vascular lesions were identified in this case series. Findings from the current study supported the use of MRI for diagnosing brain diseases in small ruminants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cytokines are now recognized to play important roles in the physiology of the central nervous system (CNS) during health and disease. Tumor necrosis factor alpha (TNF-alpha) has been implicated in the pathogenesis of several human CNS disorders including multiple sclerosis, AIDS dementia, and cerebral malaria. We have generated transgenic mice that constitutively express a murine TNF-alpha transgene, under the control of its own promoter, specifically in their CNS and that spontaneously develop a chronic inflammatory demyelinating disease with 100% penetrance from around 3-8 weeks of age. High-level expression of the transgene was seen in neurons distributed throughout the brain. Disease is manifested by ataxia, seizures, and paresis and leads to early death. Histopathological analysis revealed infiltration of the meninges and CNS parenchyma by CD4+ and CD8+ T lymphocytes, widespread reactive astrocytosis and microgliosis, and focal demyelination. The direct action of TNF-alpha in the pathogenesis of this disease was confirmed by peripheral administration of a neutralizing anti-murine TNF-alpha antibody. This treatment completely prevented the development of neurological symptoms, T-cell infiltration into the CNS parenchyma, astrocytosis, and demyelination, and greatly reduced the severity of reactive microgliosis. These results demonstrate that overexpression of TNF-alpha in the CNS can cause abnormalities in nervous system structure and function. The disease induced in TNF-alpha transgenic mice shows clinical and histopathological features characteristic of inflammatory demyelinating CNS disorders in humans, and these mice represent a relevant in vivo model for their further study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cisplatin and carboplatin are active in previously untreated patients with metastatic breast cancer (MBC) with mean response rates (RRs) of 50 and 32%, respectively. In pretreated patients the RR to cisplatin/carboplatin monotherapy declines markedly to <10%. Cisplatin and carboplatin have been combined with many other cytotoxics. In first-line setting high activity has been observed in combination with taxanes or vinorelbine (RRs consistently ∼60%). It appears that these newer combinations are superior to older regimens with etoposide (RRs 30 to 50%) or 5-fluorouracil (RRs 40 to 60%). Cisplatin-/carboplatin-based regimens with infusional 5-FU and epirubicin/paclitaxel/vinorelbine achieve high RRs of around 60 to 80%. However these regimens are difficult to administer in all patients because they require central venous access for continuous 5-FU infusion. In pretreated MBC the combinations of cisplatin-taxane/vinorelbine/gemcitabine or carboplatin-docetaxel/vinorelbine yield RRs of 40 to 50%, which are higher than those achieved with platinum-etoposide/5-FU. In locally advanced disease cisplatin-based regimens achieve very high RRs (>80%). This would suggest that in chemotherapy-naïve patients platinum-based therapy might have an important role to play. Additionally the synergy demonstrated between platinum compounds, taxanes and herceptin, in preclinical and clinical studies is of immense importance and the results of the two ongoing Breast Cancer International Research Group randomized phase III studies are eagerly awaited. These studies may help clarify the role of platinum compounds in the treatment of metastatic and possibly early breast cancer. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies of semantic impairment arising from brain disease suggest that the anterior temporal lobes are critical for semantic abilities in humans; yet activation of these regions is rarely reported in functional imaging studies of healthy controls performing semantic tasks. Here, we combined neuropsychological and PET functional imaging data to show that when healthy subjects identify concepts at a specific level, the regions activated correspond to the site of maximal atrophy in patients with relatively pure semantic impairment. The stimuli were color photographs of common animals or vehicles, and the task was category verification at specific (e.g., robin), intermediate (e.g., bird), or general (e.g., animal) levels. Specific, relative to general, categorization activated the antero-lateral temporal cortices bilaterally, despite matching of these experimental conditions for difficulty. Critically, in patients with atrophy in precisely these areas, the most pronounced deficit was in the retrieval of specific semantic information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To determine the indication and outcomes for Gamma Knife stereotactic radiosurgery (GKSRS) in the care of patients with intracranial sarcomatous metastases. Methods and Materials: Data from 21 patients who underwent radiosurgery for 60 sarcomatous intracranial metastases (54 parenchymal and 6 dural-based) were studied. Nine patients had radiosurgery for solitary tumors and 12 for multiple tumors. The primary pathology was metastatic leiomyosarcoma (4 patients), osteosarcoma (3 patients), soft-tissue sarcoma (5 patients), chondrosarcoma (2 patients), alveolar soft part sarcoma (2 patients), and rhabdomyosarcoma, Ewing's sarcoma, liposarcoma, neurofibrosarcoma, and synovial sarcoma (1 patient each). Twenty patients received multimodality management for their primary tumor, and 1 patient had no evidence of systemic disease. The mean tumor volume was 6.2 cm 3 (range, 0.07-40.9 cm 3), and a median margin dose of 16 Gy was administered. Three patients had progressive intracranial disease despite fractionated whole-brain radiotherapy before SRS. Results: A local tumor control rate of 88% was achieved (including patients receiving boost, up-front, and salvage SRS). New remote brain metastases developed in 7 patients (33%). The median survival after diagnosis of intracranial metastasis was 16 months, and the 1-year survival rate was 61%. Conclusions: Gamma Knife radiosurgery was a well-tolerated and initially effective therapy in the management of patients with sarcomatous intracranial metastases. However, many patients, including those who also received fractionated whole-brain radiotherapy, developed progressive new brain disease. © 2010 Elsevier Inc. All rights reserved.