878 resultados para blood vessels
Resumo:
To identify specific markers of rectovaginal endometriotic nodule vasculature, highly enriched preparations of vascular endothelial cells and pericytes were obtained from endometriotic nodules and control endometrial and myometrial tissue by laser capture microdissection (LCM), and gene expression profiles were screened by microarray analysis. Of the 18 400 transcripts on the arrays, 734 were significantly overexpressed in vessels from fibromuscular tissue and 923 in vessels from stromal tissue of endometriotic nodules, compared with vessels dissected from control tissues. The most frequently expressed transcripts included known endothelial cell-associated genes, as well as transcripts with little or no previous association with vascular cells. The higher expression in blood vessels was further corroborated by immunohistochemical staining of six potential markers, five of which showed strong expression in pericytes. The most promising marker was matrix Gla protein, which was found to be present in both glandular epithelial cells and vascular endothelial cells of endometriotic lesions, although it was barely expressed at all in normal endometrium. LCM, combined with microarray analysis, constitutes a powerful tool for mapping the transcriptome of vascular cells. After immunohistochemical validation, markers of vascular endothelial and perivascular cells from endometriotic nodules could be identified, which may provide targets to improve early diagnosis or to selectively deliver therapeutic agents.
Resumo:
In this paper, we present a new approach for velocity vector imaging and time-resolved measurements of strain rates in the wall of human arteries using MRI and we prove its feasibility on two examples: in vitro on a phantom and in vivo on the carotid artery of a human subject. Results point out the promising potential of this approach for investigating the mechanics of arterial tissues in vivo.
Resumo:
Blood vessels are made up of several distinct cell types. Although it was originally thought that the tunica media of blood vessels was composed of a homogeneous population of fully differentiated smooth muscle cells, more recent data suggest the existence of multiple smooth muscle cell subpopulations in the vascular wall. One of the cell types contributing to this heterogeneity is the novel, irregularly shaped, noncontractile cell with thin processes, termed interstitial cell, found in the tunica media of both veins and arteries. While the principal role of interstitial cells in veins seems to be pacemaking, the role of arterial interstitial cells is less clear. This review summarises the knowledge of the functional and structural properties of vascular interstitial cells accumulated so far, offers hypotheses on their physiological role, and proposes directions for future research.
Resumo:
BACKGROUND: Advanced glycation endproducts (AGEs) arise from the spontaneous reaction of reducing sugars with the amino groups of macromolecules. AGEs accumulate in tissue as a consequence of diabetes and aging and have been causally implicated in the pathogenesis of several of the end-organ complications of diabetes and aging, including cataract, atherosclerosis, and renal insufficiency. It has been recently proposed that components in mainstream cigarette smoke can react with plasma and extracellular matrix proteins to form covalent adducts with many of the properties of AGEs. We wished to ascertain whether AGEs or immunochemically related molecules are present at higher levels in the tissues of smokers.
MATERIALS AND METHODS: Lens and coronary artery specimens from nondiabetic smokers and nondiabetic nonsmokers were examined by immunohistochemistry, immunoelectron microscopy, and ELISA employing several distinct anti-AGE antibodies. In addition, lenticular extracts were tested for AGE-associated fluorescence by fluorescence spectroscopy.
RESULTS: Immunoreactive AGEs were present at significantly higher levels in the lenses and lenticular extracts of nondiabetic smokers (p < 0.003). Anti-AGE immunogold staining was diffusely distributed throughout lens fiber cells. AGE-associated fluorescence was significantly increased in the lenticular extracts of nondiabetic smokers (p = 0.005). AGE-immunoreactivity was significantly elevated in coronary arteries from nondiabetic smokers compared with nondiabetic nonsmokers (p = 0.015).
CONCLUSIONS: AGEs or immunochemically related molecules are present at higher levels in the tissues of smokers than in nonsmokers, irrespective of diabetes. In view of previous reports implicating AGEs in a causal association with numerous pathologies, these findings have significant ramifications for understanding the etiopathology of diseases associated with smoking, the single greatest preventable cause of morbidity and mortality in the United States.
Resumo:
The vascular adventitia is recognized as a dynamic mediator of vascular structure and function, yet its role in aging is not understood. The purpose of this thesis was to examine the age-related changes of the vascular adventitia and determine the underlying mediators responsible. Male Sprague-Dawley rats were aged to 15, 30, 50 and 80 weeks before being anesthetised and euthanized by exsanguination. Thoracic aortas, mesenteric and pudental arteries were isolated, formalin fixed, and embedded in paraffin then sectioned at 5μm. Vessels were examined by microscopy and protein expression was determined by indirect immunofluorescence. The thickness of the adventitia increased dramatically with age. Immunofluorescence revealed a robust expression of endothelin system proteins in the adventitia. Additionally, extracellular matrix proteins collagen and fibronectin, and the proliferation marker Ki67 showed strong adventitial origin. The changes observed in the vascular adventitia with aging clearly demonstrate an important role in the process of vascular aging.
Resumo:
The vascular adventitia is recognized as a dynamic mediator of vascular structure and function, yet its role in aging is not understood. The purpose of this thesis was to examine the age-related changes of the vascular adventitia and determine the underlying mediators responsible. Male Sprague-Dawley rats were aged to 15,30,50 and 80 weeks before being anesthetised and euthanized by exsanguination. Thoracic aortas, mesenteric and pudental arteries were isolated, formalin fixed, and embedded in paraffin then sectioned at 51lm. Vessels were examined by microscopy and protein expression was determined by indirect immunofluorescence. The thickness of the adventitia increased dramatically with age. Immunofluorescence revealed a robust expression of endothelin system proteins in the adventitia. Additionally, extracellular matrix proteins collagen and fibronectin, and the proliferation marker Ki67 showed strong adventitial origin. The changes observed in the vascular adventitia with aging clearly demonstrate an important role in the process of vascular aging.
Resumo:
A lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels is presented by introducing a boundary condition for elastic and moving boundaries. The mass conservation for the boundary condition is tested in detail. The viscous flow in elastic vessels is simulated with a pressure-radius relationship similar to that of the Pulmonary blood vessels. The numerical results for steady flow agree with the analytical prediction to very high accuracy, and the simulation results for pulsatile flow are comparable with those of the aortic flows observed experimentally. The model is expected to find many applications for studying blood flows in large distensible arteries, especially in those suffering from atherosclerosis. stenosis. aneurysm, etc.