988 resultados para biomaterials


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Articular cartilage is an example of a highly efficacious water-based, natural lubrication system that is optimized to provide low friction and wear protection at both low and high loads and sliding velocities. One of the secrets of cartilage's superior tribology comes from a unique, multimodal lubrication strategy consisting of both a fluid pressurization mediated lubrication mechanism and a boundary lubrication mechanism supported by surface bound macromolecules. Using a reconstituted network of highly interconnected cellulose fibers and simple modification through the immobilization of polyelectrolytes, we have recreated many of the mechanical and chemical properties of cartilage and the cartilage lubrication system to produce a purely synthetic material system that exhibits some of the same lubrication mechanisms, time dependent friction response, and high wear resistance as natural cartilage tissue. Friction and wear studies demonstrate how the properties of the cellulose fiber network can be used to control and optimize the lubrication and wear resistance of the material surfaces and highlight what key features of cartilage should be duplicated in order to produce a cartilage-mimetic lubrication system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focused on the synthesis and self-assembly of novel block copolymers for the purpose of drug delivery. The block copolymers achieved comprise of a synthetic block and a peptide block and self-assemble into nano sized particles which can act as drug containers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the therapeutic potentials of 100% iron saturated-bovine lactoferrin encapsulated in alginate-chitosan polymeric nanocarriers (AEC-CP-Fe-bLf-NCs) were examined in in vitro inflammatory OA model and in collagen-induced arthritis (CIA) mice. Oral administration of nanocarriers in mice were non-toxic and significantly induced disease modifying activity by reducing joint inflammation and downregulating the expression of catabolic genes, IL-1β, NO, JNK and MAPK. In addition, up-regulation of type II collagen, aggrecan and inflammation depleted iron and calcium metabolisms via inhibition of miRNA of iron transporting receptors was shown in AEC-CP-Fe-bLf-NCs treated mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological materials are hierarchically organized complex composites, which embrace multiple practical functionalities. As an example, the wild silkworm cocoon provides multiple protective functions against environmental and physical hazards, promoting the survival chance of moth pupae that resides inside. In the present investigation, the microstructure and thermal property of the Chinese tussah silkworm (Antheraea pernyi) cocoon in both warm and cold environments under windy conditions have been studied by experimental and numerical methods. A new computational fluid dynamics model has been developed according to the original fibrous structure of the Antheraea pernyi cocoon to simulate the unique heat transfer process through the cocoon wall. The structure of the Antheraea pernyi cocoon wall can promote the disorderness of the interior air, which increases the wind resistance by stopping most of the air flowing into the cocoon. The Antheraea pernyi cocoon is wind-proof due to the mineral crystals deposited on the outer layer surface and its hierarchical structure with low porosity and high tortuosity. The research findings have important implications to enhancing the thermal function of biomimetic protective textiles and clothing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silica nanoparticles were applied onto the fiber surface of an interbonded three-dimensional polycaprolactone fibrous tissue scaffold by an electrostatic layer-by-layer self-assembly technique. The nanoparticle layer was found to improve the fiber wettability and surface roughness. Osteoblast cells were cultured on the fibrous scaffolds to evaluate the biological compatibility. The silica nanoparticle coated scaffold showed enhanced cell attachment, proliferation, and alkaline phosphatase activities. The overall results suggested that interbonded fibrous scaffold with silica nanoparticulate coating could be a promising scaffolding candidate for various applications in bone repair and regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silk fibres from different components of the Antheraea pernyi silkworm cocoon, namely peduncle, outer floss, and cocoon shells (outermost layer and pelade layer) were studied in detail to gain insights into the structure-property-function relationship. Among the fibres from different components, peduncle fibres are the softest with the largest viscoelastic lag, which may reduce the oscillation amplitude when a cocoon hangs on a twig. Fibres from the outermost layer are the toughest and have the largest breaking energy. Outer floss fibres have the highest content of sericin (about 11.98%) but their hardness and elasticity are intermediate. Pelade fibres are shape - preservable and stable with superior hardness and elasticity. The understanding of the properties of different silk fibres is essential for understanding their respective roles in the function of a silk cocoon and will also inspire new designs of protective materials under stringent environmental conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium-strontia (Ti-SrO) metal matrix composites (MMCs) with 0, 1, 3 and 5% (weight ratio) of SrO have been fabricated through the powder metallurgy method. Increasing the weight ratio of SrO from 0 to 5%, the compressive strength of Ti-SrO MMCs increased from 982 MPa to 1753 MPa, while the ultimate strain decreased from 0.28 to 0.05. The elastic moduli of Ti-3SrO and Ti-5SrO MMCs were higher than those of Ti and Ti-1SrO MMC samples. Additionally, the micro hardness of Ti-SrO MMCs was enhanced from 59% to 190% with the addition of SrO. The enhanced compression strength and micro hardness of Ti-SrO MMCs were attributed to the Hall-Petch effect and the SrO dispersion strengthening in the Ti matrix. MTS assay results demonstrated that Ti-SrO MMCs with 3% SrO exhibited enhanced proliferation of osteoblast-like cells. Alkaline phosphatase activity of cells was not influenced significantly on the surface of Ti-SrO MMCs compared with pure Ti in a term longer than 10 days. The cell morphology on the Ti-SrO MMCs was observed using confocal microscopy and scanning electron microscopy, which confirmed that the Ti-3%SrO MMCs showed optimal in vitro biocompatibility. This journal is © the Partner Organisations 2014.