986 resultados para biological applications of polymers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The applications of scanning probe microscopy (SPM) in intrinsically conducting polymer research is briefly reviewed, including morphology observation, nanofabrication, microcosmic electrical property measurements, electrochemistry researches, in-situ measurements of film thickness change, and so on. At the same time, some important variations of SPM and the related techniques are briefly introduced. Finally, the future development of SPM in the study of intrinsically conducting polymers is prospected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipid liquid crystalline nanoparticles can find application as nanocarriers in several fields of the daily life but, very likely, the pharmaceutical arena is the most relevant. Indeed, several problems encountered in drugs administration (e.g. critical sideeffects from antitumor drugs) require alternative, less invasive, but simultaneously efficient therapeutic routes to be explored. Novel fields of personalized nanomedicine are developing in this direction. One of the most interesting is theranostic, which calls for the design of platforms capable of combining therapeutic and diagnostic functionalities. In this optic, we explored the potential of monoolein-based cubosomes and hexosomes as nanocarriers for theranostic purposes. Our work focussed on the design of lipid nanoparticles able to deliver antineoplastic drugs and imaging probes for fluorescent optical in vitro and in vivo imaging. We developed cubosome formulations loaded with antineoplastic drugs and useful for the fluorescence imaging of cells. Such formulations were also actively targeted to cancer cells and coupled with a NIR-emitting fluorophore, which was the promise for in vivo applications. We also investigated hexosomes with encouraging results encapsulating in their lipid matrix a BODIPY derivative with solvatochromic properties, helpful for the understanding of the dye localization. Importantly, we reported (manuscript submitted) the first proof-of-principle for in vivo fluorescence optical imaging application using monoolein-based cubosomes in a healthy mouse animal model. Finally, since relatively little is known about the interaction of cubosomes with biological systems, their effects on lipid droplets, mitochondria and lipid profile of HeLa cells were deeply studied. This thesis is divided in two main parts. The introduction section reports on the essential background of the research field, and it is followed by the publications (published or submitted) resulting from these three years of work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter contains sections titled: - Introduction - Microgel preparation - Characterisation of microgels - Properties and applications - Conclusions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the emerging use of diamond-like carbon (DLC) as a coating for medical devices, few studies have examined the resistance of DLC coatings onto medical polymers to both microbial adherence and encrustation. In this study, amorphous DLC of a range of refractive indexes (1.7-1.9) and thicknesses (100-600 nm) was deposited onto polyurethane, a model polymer, and the resistance to microbial adherence (Escherichia coli; clinical isolate) and encrustation examined using in vitro models. In comparison to the native polymer, the advancing and receding contact angles of DLC-coated polyurethane were lower, indicating greater hydrophilic properties. No relationship was observed between refractive index, thickness, and advancing contact angle, as determined using multiple correlation analysis. The resistances of the various DLC-coated polyurethane films to encrustation and microbial adherence were significantly greater than that to polyurethane; however, there were individual differences between the resistances of the various DLC coatings. In general, increasing the refractive index of the coatings (100 nm thickness) decreased the resistance of the films to both hydroxyapatite and struvite encrustation and to microbial adherence. Films of lower thicknesses (100 and 200 nm; of defined refractive index, 1.8), exhibited the greatest resistance to encrustation and to microbial adherence. In conclusion, this study has uniquely illustrated both the microbial antiadherence properties and resistance to urinary encrustation of DLC-coated polyurethane. The resistances to encrustation and microbial adherence were substantial, and in light of this, it is suggested that DLC coatings of low thickness and refractive index show particular promise as coatings of polymeric medical devices. (c) 2006 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical Imaging (CI) is an emerging platform technology that integrates conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Vibrational spectroscopic methods, such as Near Infrared (NIR) and Raman spectroscopy, combined with imaging are particularly useful for analysis of biological/pharmaceutical forms. The rapid, non-destructive and non-invasive features of CI mark its potential suitability as a process analytical tool for the pharmaceutical industry, for both process monitoring and quality control in the many stages of drug production. This paper provides an overview of CI principles, instrumentation and analysis. Recent applications of Raman and NIR-CI to pharmaceutical quality and process control are presented; challenges facing Cl implementation and likely future developments in the technology are also discussed. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanoparticles (GNPs) are being proposed as contrast agents to enhance X-ray imaging and radiotherapy, seeking to take advantage of the increased X-ray absorption of gold compared to soft tissue. However, there is a great discrepancy between physically predicted increases in X-ray energy deposition and experimentally observed increases in cell killing. In this work, we present the first calculations which take into account the structure of energy deposition in the nanoscale vicinity of GNPs and relate this to biological outcomes, and show for the first time good agreement with experimentally observed cell killing by the combination of X-rays and GNPs. These results are not only relevant to radiotherapy, but also have implications for applications of heavy atom nanoparticles in biological settings or where human exposure is possible because the localised energy deposition high-lighted by these results may cause complex DNA damage, leading to mutation and carcinogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose. © 2011 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unique properties of nanomaterials, in particular gold nanoparticles (GNPs) have applications for a wide range of biomedical applications. GNPs have been proposed as novel radiosensitizing agents due to their strong photoelectric absorption coefficient. Experimental evidence supporting the application of GNPs as radiosensitizing agents has been provided from extensive in vitro investigation and a relatively limited number of in vivo studies. Whilst these studies provide experimental evidence for the use of GNPs in combination with ionising radiation, there is an apparent disparity between the observed experimental findings and the level of radiosensitization predicted by mass energy absorption and GNP concentration. This review summarises experimental findings and attempts to highlight potential underlying biological mechanisms of response in GNP radiosensitization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal organic frameworks (MOFs) are highly porous materials that can store significant amounts of gas, including nitric oxide. The chemical composition and toxicology of many (but not all) of these materials makes them potentially suitable for medical applications. In this paper, we will describe how triggered release methods can be used to deliver biologically relevant amounts of NO and then show how Ni, Co and Cu-containing MOFs are biologically active materials with potential applications in several different areas (anti-thrombosis, dermatology and wound healing, anti-bacterial, vasodilation etc.). We will also discuss the pros and cons of MOFs, including their chemical and biological stability and the toxicology of MOFs in general. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study concentrates the chemical properties of hydrazones due to its chelating capability and their pharmacological applications. Studies cover the preparation of different acid hydrazones and their structural studies and studies on their antimicrobial activity, synthesis and spectral characterization of different complexes of copper oxovanadium, manganese, nickel etc. Effect of incorporation of heterocyclic bases to the coordination sphere, change in the biological activity of acid hydrazones upon coordination, development of X-ray quality single crystals and its X-ray diffraction studies, studies on the redox behavior of the coordinated metal ions and correlation between the stereochemistry and biological activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis Entitled Photonic applications of biomaterials with special reference to biopolymers and microbes. A detailed investigation will be presented in the present thesis related to direct applications of biopolymers into some selected area of photonics and how the growth kinetics of an aerial bacterial colony on solid agar media was studied using laser induced fluorescence technique. This chapter is an overview of the spectrum of biomaterials and their application to Photonics. The chapter discusses a wide range of biomaterials based photonics applications like efficient harvesting of solar energy, lowthreshold lasing, high-density data storage, optical switching, filtering and template for nano s tructures. The most extensively investigated photonics application in biology is Laser induced fluorescence technique. The importance of fluorescence studies in different biological and related fields are also mentioned in this chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protease inhibitors are found abundantly in numerous plants, animals and microorganisms, owing their significance to their application in the study of enzyme structures, reaction mechanisms and also their utilization in pharmacology and agriculture. They are (synthetic/natural) substances that act directly on proteases to lower the catalytic rate. Although most of these inhibitory proteins are directed against serine proteases, some target cysteine, aspartyl or metalloproteases (Bode and Huber, 1992). Protease inhibitors are essential for regulating the activity of their corresponding proteases and play key regulatory roles in many biological processes. Applications of protease inhibitors are intimately connected to the proteases they inhibit; an overview of proteases with the modes of regulation of their proteolytic activity is discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.