983 resultados para beta-adrenergic agonist


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our laboratory has been testing the hypothesis that genetic modulation of the beta-adrenergic signaling cascade can enhance cardiac function. We have previously shown that transgenic mice with cardiac overexpression of either the human beta2-adrenergic receptor (beta2AR) or an inhibitor of the beta-adrenergic receptor kinase (betaARK), an enzyme that phosphorylates and uncouples agonist-bound receptors, have increased myocardial inotropy. We now have created recombinant adenoviruses encoding either the beta2AR (Adeno-beta2AR) or a peptide betaARK inhibitor (consisting of the carboxyl terminus of betaARK1, Adeno-betaARKct) and tested their ability to potentiate beta-adrenergic signaling in cultured adult rabbit ventricular myocytes. As assessed by radioligand binding, Adeno-beta2AR infection led to approximately 20-fold overexpression of beta-adrenergic receptors. Protein immunoblots demonstrated the presence of the Adeno-betaARKct transgene. Both transgenes significantly increased isoproterenol-stimulated cAMP as compared to myocytes infected with an adenovirus encoding beta-galactosidase (Adeno-betaGal) but did not affect the sarcolemmal adenylyl cyclase response to Forskolin or NaF. beta-Adrenergic agonist-induced desensitization was significantly inhibited in Adeno-betaARKct-infected myocytes (16+/-2%) as compared to Adeno-betaGal-infected myocytes (37+/-1%, P < 0.001). We conclude that recombinant adenoviral gene transfer of the beta2AR or an inhibitor of betaARK-mediated desensitization can potentiate beta-adrenergic signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homologous (agonist-specific) desensitization of beta-adrenergic receptors (beta ARs) is accompanied by and appears to require phosphorylation of the receptors. We have recently described a novel protein kinase, beta AR kinase, which phosphorylates beta ARs in vitro in an agonist-dependent manner. This kinase is inhibited by two classes of compounds, polyanions and synthetic peptides derived from the beta 2-adrenergic receptor (beta 2AR). In this report we describe the effects of these inhibitors on the process of homologous desensitization induced by the beta-adrenergic agonist isoproterenol. Permeabilization of human epidermoid carcinoma A431 cells with digitonin was used to permit access of the charged inhibitors to the cytosol; this procedure did not interfere with the pattern of isoproterenol-induced homologous desensitization of beta 2AR-stimulated adenylyl cyclase. Inhibitors of beta AR kinase markedly inhibited homologous desensitization of beta 2ARs in the permeabilized cells. Inhibition of desensitization by heparin, the most potent of the polyanion inhibitors of beta AR kinase, occurred over the same concentration range (5-50 nM) as inhibition of purified beta AR kinase assessed in a reconstituted system. Inhibition of desensitization by heparin was accompanied by a marked reduction of receptor phosphorylation in the permeabilized cells. Whereas inhibitors of beta AR kinase inhibited homologous desensitization, inhibitors of protein kinase C and of cyclic-nucleotide-dependent protein kinases were ineffective. These data establish that phosphorylation of beta ARs by beta AR kinase is an essential step in homologous desensitization of the receptors. They further suggest a potential therapeutic value of inhibitors of beta AR kinase in inhibiting agonist-induced desensitization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decreased activity of the guanine nucleotide regulatory protein (N) of the adenylate cyclase system is present in cell membranes of some patients with pseudohypoparathyrodism (PHP-Ia) whereas others have normal activity of N (PHP-Ib). Low N activity in PHP-Ia results in a decrease in hormone (H)-stimulatable adenylate cyclase in various tissues, which might be due to decreased ability to form an agonist-specific high affinity complex composed of H, receptor (R), and N. To test this hypothesis, we compared beta-adrenergic agonist-specific binding properties in erythrocyte membranes from five patients with PHP-Ia (N = 45% of control), five patients with PHP-Ib (N = 97%), and five control subjects. Competition curves that were generated by increasing concentrations of the beta-agonist isoproterenol competing with [125I]pindolol were shallow (slope factors less than 1) and were computer fit to a two-state model with corresponding high and low affinity for the agonist. The agonist competition curves from the PHP-Ia patients were shifted significantly (P less than 0.02) to the right as a result of a significant (P less than 0.01) decrease in the percent of beta-adrenergic receptors in the high affinity state from 64 +/- 22% in PHP-Ib and 56 +/- 5% in controls to 10 +/- 8% in PHP-Ia. The agonist competition curves were computer fit to a "ternary complex" model for the two-step reaction: H + R + N in equilibrium HR + N in equilibrium HRN. The modeling was consistent with a 60% decrease in the functional concentration of N, and was in good agreement with the biochemically determined decrease in erythrocyte N protein activity. These in vitro findings in erythrocytes taken together with the recent observations that in vivo isoproterenol-stimulated adenylate cyclase activity is decreased in patients with PHP (Carlson, H. E., and A. S. Brickman, 1983, J. Clin. Endocrinol. Metab. 56:1323-1326) are consistent with the notion that N is a bifunctional protein interacting with both R and the adenylate cyclase. It may be that in patients with PHP-Ia a single molecular and genetic defect accounts for both decreased HRN formation and decreased adenylate cyclase activity, whereas in PHP-Ib the biochemical lesion(s) appear not to affect HRN complex formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta-Adrenergic receptor kinase (beta-AR kinase) is a cytosolic enzyme that phosphorylates the beta-adrenergic receptor only when it is occupied by an agonist [Benovic, J. Strasser, R. H., Caron, M. G. & Lefkowitz, R. J. (1986) Proc. Natl. Acad. Sci. USA 83, 2797-2801.] It may be crucially involved in the processes that lead to homologous or agonist-specific desensitization of the receptor. Stimulation of DDT1MF-2 hamster smooth muscle cells or S49 mouse lymphoma cells with a beta-agonist leads to translocation of 80-90% of the beta-AR kinase activity from the cytosol to the plasma membrane. The translocation process is quite rapid, is concurrent with receptor phosphorylation, and precedes receptor desensitization and sequestration. It is also transient, since much of the activity returns to the cytosol as the receptors become sequestered. Stimulation of beta-AR kinase translocation is a receptor-mediated event, since the beta-antagonist propranolol blocks the effect of agonist. In the kin- mutant of the S49 cells (lacks cAMP-dependent protein kinase), prostaglandin E1, which provokes homologous desensitization of its own receptor, is at least as effective as isoproterenol in promoting beta-AR kinase translocation to the plasma membrane. However, in the DDT1MF-2 cells, which contain alpha 1-adrenergic receptors coupled to phosphatidylinositol turnover, the alpha 1-agonist phenylephrine is ineffective. These results suggest that the first step in homologous desensitization of the beta-adrenergic receptor may be an agonist-promoted translocation of beta-AR kinase from cytosol to plasma membrane and that beta-AR kinase may represent a more general adenylate cyclase-coupled receptor kinase that participates in regulating the function of many such receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agonist-promoted desensitization of adenylate cyclase is intimately associated with phosphorylation of the beta-adrenergic receptor in mammalian, avian, and amphibian cells. However, the nature of the protein kinase(s) involved in receptor phosphorylation remains largely unknown. We report here the identification and partial purification of a protein kinase capable of phosphorylating the agonist-occupied form of the purified beta-adrenergic receptor. The enzyme is prepared from a supernatant fraction from high-speed centrifugation of lysed kin- cells, a mutant of S49 lymphoma cells that lacks a functional cAMP-dependent protein kinase. The beta-agonist isoproterenol induces a 5- to 10-fold increase in receptor phosphorylation by this kinase, which is blocked by the antagonist alprenolol. Fractionation of the kin- supernatant on molecular-sieve HPLC and DEAE-Sephacel results in a 50- to 100-fold purified beta-adrenergic receptor kinase preparation that is largely devoid of other protein kinase activities. The kinase activity is insensitive to cAMP, cGMP, cAMP-dependent kinase inhibitor, Ca2+-calmodulin, Ca2+-phospholipid, and phorbol esters and does not phosphorylate general kinase substrates such as casein and histones. Phosphate appears to be incorporated solely into serine residues. The existence of this novel cAMP-independent kinase, which preferentially phosphorylates the agonist-occupied form of the beta-adrenergic receptor, suggests a mechanism that may explain the homologous or agonist-specific form of adenylate cyclase desensitization. It also suggests a general mechanism for regulation of receptor function in which only the agonist-occupied or "active" form of the receptor is a substrate for enzymes inducing covalent modification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catecholamines regulate several physiological processes in mollusks. Many pharmacological experiments have been conducted to determine the effects of adrenergic agonist and antagonist of catecholamine receptors on Meretrix meretrix metamorphosis. Results showed that adrenaline (AD) and noradrenaline (NA) had substantial effects (p < 0.05) on larval metamorphosis at concentrations ranging from 10 mu M to 100 mu M. 10 mu M beta-adrenergic receptor (AR) agonist isoproterenol showed the same inducement effect as that of NA and AD on metamorphosis, whereas the alpha-AR agonist phenylephrine had no significant effect at concentrations between 0.1 mu M and 100 mu M concentrations (p > 0.05). Furthermore, I mu M beta-AR antagonist propanolol, but not alpha-AR antagonist prazosin, depressed the larval metamorphosis induced by NA or AD. By immunocytochemistry, two cell bodies of beta-adrenergic-like receptor, C/A1, C/A2, were observed in the cerebral/apical ganglion of competent larvae. In addition, there were other immunoreactive dots near C/A1 and C/A2. The results of pharmacology and immunocytochemistry suggests that beta-adrenergic-like receptor located in the larval CNS, might play a considerable role in the larval metamorphosis of M meretrix by AD or NA. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The clinical syndrome of heart failure (HF) is characterized by an impaired cardiac beta-adrenergic receptor (betaAR) system, which is critical in the regulation of myocardial function. Expression of the betaAR kinase (betaARK1), which phosphorylates and uncouples betaARs, is elevated in human HF; this likely contributes to the abnormal betaAR responsiveness that occurs with beta-agonist administration. We previously showed that transgenic mice with increased myocardial betaARK1 expression had impaired cardiac function in vivo and that inhibiting endogenous betaARK1 activity in the heart led to enhanced myocardial function. METHODS AND RESULTS: We created hybrid transgenic mice with cardiac-specific concomitant overexpression of both betaARK1 and an inhibitor of betaARK1 activity to study the feasibility and functional consequences of the inhibition of elevated betaARK1 activity similar to that present in human HF. Transgenic mice with myocardial overexpression of betaARK1 (3 to 5-fold) have a blunted in vivo contractile response to isoproterenol when compared with non-transgenic control mice. In the hybrid transgenic mice, although myocardial betaARK1 levels remained elevated due to transgene expression, in vitro betaARK1 activity returned to control levels and the percentage of betaARs in the high-affinity state increased to normal wild-type levels. Furthermore, the in vivo left ventricular contractile response to betaAR stimulation was restored to normal in the hybrid double-transgenic mice. CONCLUSIONS: Novel hybrid transgenic mice can be created with concomitant cardiac-specific overexpression of 2 independent transgenes with opposing actions. Elevated myocardial betaARK1 in transgenic mouse hearts (to levels seen in human HF) can be inhibited in vivo by a peptide that can prevent agonist-stimulated desensitization of cardiac betaARs. This may represent a novel strategy to improve myocardial function in the setting of compromised heart function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heart failure is accompanied by severely impaired beta-adrenergic receptor (betaAR) function, which includes loss of betaAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of betaAR function is agonist-stimulated receptor phosphorylation by the betaAR kinase (betaARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in betaAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of betaARK1 or the beta2AR were mated into a genetic model of murine heart failure (MLP-/-). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP-/- and MLP-/-/beta2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP-/-/betaARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP-/-/betaARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP-/- mice but less than controls. Importantly, heightened betaAR desensitization in the MLP-/- mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the betaARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal betaAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit betaARK1 as a novel mode of therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The beta-adrenergic receptor kinase 1 (beta ARK1) is a member of the G protein-coupled receptor kinase (GRK) family that mediates the agonist-dependent phosphorylation and desensitization of G protein-coupled receptors. We have cloned and disrupted the beta ARK1 gene in mice by homologous recombination. No homozygote beta ARK1-/- embryos survive beyond gestational day 15.5. Prior to gestational day 15.5, beta ARK1-/- embryos display pronounced hypoplasia of the ventricular myocardium essentially identical to the "thin myocardium syndrome" observed upon gene inactivation of several transcription factors (RXR alpha, N-myc, TEF-1, WT-1). Lethality in beta ARK1-/- embryos is likely due to heart failure as they exhibit a > 70% decrease in cardiac ejection fraction determined by direct in utero intravital microscopy. These results along with the virtual absence of endogenous GRK activity in beta ARK1-/- embryos demonstrate that beta ARK1 appears to be the predominant GRK in early embryogenesis and that it plays a fundamental role in cardiac development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The beta 1- and beta 2-adrenergic receptors are two structurally related, but pharmacologically distinguishable, receptor subtypes, both of which activate adenylyl cyclase in a catecholamine-dependent manner through the guanine nucleotide-binding regulatory protein Gs. The receptors are approximately 50% identical in amino acid sequence and each is characterized by the presence of seven putative transmembrane domains. To elucidate the structural basis for the pharmacological distinctions between these two receptor subtypes, we constructed a series of chimeric beta 1/beta 2-adrenergic receptor genes and expressed them by injection of RNA into Xenopus laevis oocytes. The pharmacological properties of the expressed chimeric receptor proteins were assessed by radioligand binding and adenylyl cyclase assays utilizing subtype-selective agonists and antagonists. Our data indicate that transmembrane region IV is largely responsible for determining beta 1 vs. beta 2 properties with respect to agonist binding (relative affinities for epinephrine and norepinephrine). Transmembrane regions VI and VII play an important role in determining binding of beta 1 vs. beta 2 selective antagonists. However, a number of the other transmembrane regions also contribute, to a lesser extent, to the determination of beta-adrenergic receptor subtype specificity for agonists and antagonists. Thus, several of the membrane-spanning regions appear to be involved in the determination of receptor subtype specificity, presumably by formation of a ligand-binding pocket, with determinants for agonist and antagonist binding being distinguishable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The beta-adrenergic receptor kinase is an enzyme, possibly analogous to rhodopsin kinase, that multiply phosphorylates the beta-adrenergic receptor only when it is occupied by stimulatory agonists. Since this kinase may play an important role in mediating the process of homologous, or agonist-specific, desensitization, we investigated the functional consequences of receptor phosphorylation by the kinase and possible analogies with the mechanism of action of rhodopsin kinase. Pure hamster lung beta 2-adrenergic receptor, reconstituted in phospholipid vesicles, was assessed for its ability to mediate agonist-promoted stimulation of the GTPase activity of coreconstituted stimulatory guanine nucleotide-binding regulatory protein. When the receptor was phosphorylated by partially (approximately 350-fold) purified preparations of beta-adrenergic receptor kinase, as much as 80% inactivation of its functional activity was observed. However, the use of more highly purified enzyme preparations led to a dramatic decrease in the ability of phosphorylation to inactivate the receptor such that pure enzyme preparations (approximately 20,000-fold purified) caused only minimal (approximately 1off/- 7%) inactivation. Addition of pure retinal arrestin (48-kDa protein or S antigen), which is involved in enhancing the inactivating effect of rhodopsin phosphorylation by rhodopsin kinase, led to partial restoration of the functional effect of beta-adrenergic receptor kinase-promoted phosphorylation (41 +/- 3% inactivation). These results suggest the possibility that a protein analogous to retinal arrestin may exist in other tissues and function in concert with beta-adrenergic receptor kinase to regulate the activity of adenylate cyclase-coupled receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prolonged exposure of cells or tissues to drugs or hormones such as catecholamines leads to a state of refractoriness to further stimulation by that agent, known as homologous desensitization. In the case of the beta-adrenergic receptor coupled to adenylate cyclase, this process has been shown to be intimately associated with the sequestration of the receptors from the cell surface through a cAMP-independent process. Recently, we have shown that homologous desensitization in the frog erythrocyte model system is also associated with increased phosphorylation of the beta-adrenergic receptor. We now provide evidence that the phosphorylation state of the beta-adrenergic receptor regulates its functional coupling to adenylate cyclase, subcellular translocation, and recycling to the cell surface during the process of agonist-induced homologous desensitization. Moreover, we show that the receptor phosphorylation is reversed by a phosphatase specifically associated with the sequestered subcellular compartment. At 23 degrees C, the time courses of beta-adrenergic receptor phosphorylation, sequestration, and adenylate cyclase desensitization are identical, occurring without a lag, exhibiting a t1/2 of 30 min, and reaching a maximum at approximately 3 hr. Upon cell lysis, the sequestered beta-adrenergic receptors can be partially recovered in a light membrane vesicle fraction that is separable from the plasma membranes by differential centrifugation. The increased beta-adrenergic receptor phosphorylation is apparently reversed in the sequestered vesicle fraction as the sequestered receptors exhibit a phosphate/receptor stoichiometry that is similar to that observed under basal conditions. High levels of a beta-adrenergic receptor phosphatase activity appear to be associated with the sequestered vesicle membranes. The functional activity of the phosphorylated beta-adrenergic receptor was examined by reconstituting purified receptor with its biochemical effector the guanine nucleotide regulatory protein (Ns) in phospholipid vesicles and assessing the receptor-stimulated GTPase activity of Ns. Compared to controls, phosphorylated beta-adrenergic receptors, purified from desensitized cells, were less efficacious in activating the Ns GTPase activity. These results suggest that phosphorylation of the beta-adrenergic receptor leads to its functional uncoupling and physical translocation away from the cell surface into a sequestered membrane domain. In the sequestered compartment, the phosphorylation is reversed thus enabling the receptor to recycle back to the cell surface and recouple with adenylate cyclase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the characterisation of 27 cardiovascular-related traits in 23 inbred mouse strains. Mice were phenotyped either in response to chronic administration of a single dose of the beta-adrenergic receptor blocker atenolol or under a low and a high dose of the beta-agonist isoproterenol and compared to baseline condition. The robustness of our data is supported by high trait heritabilities (typically H(2)>0.7) and significant correlations of trait values measured in baseline condition with independent multistrain datasets of the Mouse Phenome Database. We then focused on the drug-, dose-, and strain-specific responses to beta-stimulation and beta-blockade of a selection of traits including heart rate, systolic blood pressure, cardiac weight indices, ECG parameters and body weight. Because of the wealth of data accumulated, we applied integrative analyses such as comprehensive bi-clustering to investigate the structure of the response across the different phenotypes, strains and experimental conditions. Information extracted from these analyses is discussed in terms of novelty and biological implications. For example, we observe that traits related to ventricular weight in most strains respond only to the high dose of isoproterenol, while heart rate and atrial weight are already affected by the low dose. Finally, we observe little concordance between strain similarity based on the phenotypes and genotypic relatedness computed from genomic SNP profiles. This indicates that cardiovascular phenotypes are unlikely to segregate according to global phylogeny, but rather be governed by smaller, local differences in the genetic architecture of the various strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Récemment plusieurs récepteurs couplés aux protéines G (RCPGs) ont été caractérisés au niveau des membranes intracellulaires, dont la membrane nucléaire. Notre objectif était de déterminer si les sous-types de récepteurs β-adrénergiques (βAR) et leurs machineries de signalisation étaient fonctionnels et localisés à la membrane nucléaire des cardiomyocytes. Nous avons démontré la présence des β1AR et β3AR, mais pas du β2AR à la membrane nucléaire de myocytes ventriculaires adultes par immunobuvardage, par microscopie confocale, et par des essais fonctionnels. De plus, certains partenaires de signalisation comme les protéines GαS, Gαi, l’adénylate cyclase II, et V/VI y étaient également localisés. Les sous-types de βAR nucléaires étaient fonctionnels puisqu'ils pouvaient lier leurs ligands et activer leurs effecteurs. En utilisant des noyaux isolés, nous avons observé que l'agoniste non-sélectif isoprotérénol (ISO), et que le BRL37344, un ligand sélectif du β3AR, stimulaient l'initiation de la synthèse de l’ARN, contrairement à l'agoniste sélectif du β1AR, le xamotérol. Cette synthèse était abolie par la toxine pertussique (PTX). Cependant, la stimulation des récepteurs nucléaires de type B de l’endothéline (ETB) causaient une réduction de l'initiation de la synthèse d’ARN. Les voies de signalisations impliquées dans la régulation de la synthèse d’ARN par les RCPGs ont ensuite été étudiées en utilisant des noyaux isolés stimulés par des agonistes en présence ou absence de différents inhibiteurs des voies MAP Kinases (proteines kinases activées par mitogènes) et de la voie PI3K/PKB. Les protéines impliquées dans les voies de signalisation de p38, JNK, ERK MAP Kinase et PKB étaient présents dans les noyaux isolés. L'inhibition de PKB par la triciribine, inhibait la synthèse d’ARN. Nous avons ensuite pu mettre en évidence par qPCR que la stimulation par l’ISO entrainait une augmentation du niveau d'ARNr 18S ainsi qu’une diminution de l'expression d’ARNm de NFκB. En contraste, l’ET-1 n’avait aucun effet sur le niveau d’expression de l’ARNr 18S. Nous avons ensuite montré que la stimulation par l’ISO réduisait l’expression de plusieurs gènes impliqués dans l'activation de NFκB, tandis que l’inhibition de ERK1/2 et PKB renversait cet effet. Un microarray global nous a ensuite permis de démontrer que les βARs et les ETRs nucléaires régulaient un grand nombre de gènes distincts. Finalement, les βARs et ETRs nucléaires augmentaient aussi une production de NO de noyaux isolés, ce qui pouvait être inhibée par le LNAME. Ces résultats ont été confirmés dans des cardiomyocytes intacts en utilisant des analogues cagés et perméables d’ISO et de l'ET-1: l'augmentation de NO nucléaire détectée par DAF2-DA, causée par l'ET-1 et l'ISO, pouvait être prévenue par le LNAME. Finalement, l’augmentation de l’initiation de la transcription induite par l'ISO était aussi bloquée par le L-NAME ou par un inbitheur de PKG, le KT5823, suggérant que la voie NO-GC-PKG est impliquée dans la régulation de la transcription par les βAR. En conclusion, les βARs et les ETRs nucléaires utilisent des voies de signalisation différentes et exercent ainsi des effets distincts sur l’expression des gènes cardiaques. Ils représentent donc une avenue intéressante pour le développement de drogues pharmacologiques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β(1)-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10(-8)). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10(-6)). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.