995 resultados para bacterial attachment


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human pathogens enteropathogenic (EPEC) and enterohemorrhagic Escherichia coli and the related mouse pathogen Citrobacter rodentium subvert a variety of host cell signaling pathways via their plethora of type III secreted effectors, including triggering of an early apoptotic response. EPEC-infected cells do not develop late apoptotic symptoms, however. In this study we demonstrate that the NleH family effectors, homologs of the Shigella effector kinase OspG, blocks apoptosis. During EPEC infection, NleH effectors inhibit elevation of cytosolic Ca(2+) concentrations, nuclear condensation, caspase-3 activation, and membrane blebbing and promote cell survival. NleH1 alone is sufficient to prevent procaspase-3 cleavage induced by the proapoptotic compounds staurosporine, brefeldin A, and tunicamycin. Using C. rodentium, we found that NleH inhibits procaspase-3 cleavage at the bacterial attachment sites in vivo. A yeast two-hybrid screen identified the endoplasmic reticulum six-transmembrane protein Bax inhibitor-1 (BI-1) as an NleH-interacting partner. We mapped the NleH-binding site to the N-terminal 40 amino acids of BI-1. Knockdown of BI-1 resulted in the loss of NleH's antiapoptotic activity. These results indicate that NleH effectors are inhibitors of apoptosis that may act through BI-1 to carry out their cytoprotective function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Attaching and effacing (A/E) lesions and actin polymerization, the hallmark of enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and Citrobacter rodentium (CR) infections, are dependent on the effector Tir. Phosphorylation of Tir(EPEC/CR) Y474/1 leads to recruitment of Nck and neural Wiskott-Aldrich syndrome protein (N-WASP) and strong actin polymerization in cultured cells. Tir(EPEC/CR) also contains an Asn-Pro-Tyr (NPY(454/1)) motif, which triggers weak actin polymerization. In EHEC the NPY(458) actin polymerization pathway is amplified by TccP/EspF(U), which is recruited to Tir via IRSp53 and/or insulin receptor tyrosine kinase substrate (IRTKS). Here we used C. rodentium to investigate the different Tir signalling pathways in vivo. Following infection with wild-type C. rodentium IRTKS, but not IRSp53, was recruited to the bacterial attachment sites. Similar results were seen after infection of human ileal explants with EHEC. Mutating Y471 or Y451 in Tir(CR) abolished recruitment of Nck and IRTKS respectively, but did not affect recruitment of N-WASP or A/E lesion formation. This suggests that despite their crucial role in actin polymerization in cultured cells the Tir:Nck and Tir:IRTKS pathways are not essential for N-WASP recruitment or A/E lesion formation in vivo. Importantly, wild-type C. rodentium out-competed the tir tyrosine mutants during mixed infections. These results uncouple the Tir:Nck and Tir:IRTKS pathways from A/E lesion formation in vivo but assign them an important in vivo role.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of the ultrafine crystallinity of commercial purity grade 2 (as-received) titanium and titanium modified by equal channel angular pressing (modified titanium) on bacterial attachment was studied. A topographic profile analysis of the surface of the modified titanium revealed a complex morphology of the surface. Its prominent micro- and nano-scale features were 100-200-nm-scale undulations with 10-15 microm spacing. The undulating surfaces were nano-smooth, with height variations not exceeding 5-10 nm. These surface topography characteristics were distinctly different from those of the as-received samples, where broad valleys (up to 40-60 microm) were detected, whose inner surfaces exhibited asperities approximately 100 nm in height spaced at 1-2 microm. It was found that each of the three bacteria strains used in this study as adsorbates, viz. Staphylococcus aureus CIP 68.5, Pseudomonas aeruginosa ATCC 9025 and Escherichia coli K12, responded differently to the two types of titanium surfaces. Extreme grain refinement by ECAP resulted in substantially increased numbers of cells attached to the surface compared to as-received titanium. This enhanced degree of attachment was accompanied with an increased level of extracellular polymeric substances (EPS) production by the bacteria.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aggregation of algae, mainly diatoms, is an important process in marine systems leading to the settling of particulate organic carbon predominantly in the form of marine snow. Exudation products of phytoplankton form transparent exopolymer particles (TEP), which acts as the glue for particle aggregation. Heterotrophic bacteria interacting with phytoplankton may influence TEP formation and phytoplankton aggregation. This bacterial impact has not been explored in detail. We hypothesized that bacteria attaching to Thalassiosira weissflogii might interact in a yet-to-be determined manner, which could impact TEP formation and aggregate abundance. The role of individual T. weissflogii-attaching and free-living new bacterial isolates for TEP production and diatom aggregation was investigated in vitro. T. weissflogii did not aggregate in axenic culture, and striking differences in aggregation dynamics and TEP abundance were observed when diatom cultures were inoculated with either diatom-attaching or free-living bacteria. The data indicated that free-living bacteria might not influence aggregation whereas bacteria attaching to diatom cells may increase aggregate formation. Interestingly, photosynthetically inactivated T. weissflogii cells did not aggregate regardless of the presence of bacteria. Comparison of aggregate formation, TEP production, aggregate sinking velocity and solid hydrated density revealed remarkable differences. Both, photosynthetically active T. weissflogii and specific diatom-attaching bacteria were required for aggregation. It was concluded that interactions between heterotrophic bacteria and diatoms increased aggregate formation and particle sinking and thus may enhance the efficiency of the biological pump.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upon infection, Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate effector proteins from the Legionella-containing vacuole (LCV) into the host cell cytoplasm. The effectors target a wide array of host cellular processes that aid LCV biogenesis, including the manipulation of membrane trafficking. In this study, we used a hidden Markov model screen to identify two novel, non-eukaryotic soluble NSF attachment protein receptor (SNARE) homologs: the bacterial Legionella SNARE effector A (LseA) and viral SNARE homolog A proteins. We characterized LseA as a Dot/Icm effector of L. pneumophila, which has close homology to the Qc-SNARE subfamily. The lseA gene was present in multiple sequenced L. pneumophila strains including Corby and was well distributed among L. pneumophila clinical and environmental isolates. Employing a variety of biochemical, cell biological and microbiological techniques, we found that farnesylated LseA localized to membranes associated with the Golgi complex in mammalian cells and LseA interacted with a subset of Qa-, Qb- and R-SNAREs in host cells. Our results suggested that LseA acts as a SNARE protein and has the potential to regulate or mediate membrane fusion events in Golgi-associated pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: This study reports the development, characterisation and microbiological testing of surface-modified polyvinylchloride (PVC) films for the purpose of reducing bacterial adherence.

METHODS: Irreversible covalent surface modification was achieved via nucleophilic substitution of fluorinated thiol-terminated compounds onto the polymer backbone. Four fluorinated modifiers, 2,3,5,6-tetrafluorothiophenol (TFTP), 4-(trifluoromethyl)thiophenol (TFMTP), 3,5-bis(trifluoromethyl)benzenethiol (BTFMBT) and 3,3,4,4,5,5,6,6,7, 7,8,8,9,9,10,10,10-heptadecafluoro-decane-1-thiol (HDFDT), were investigated. Modification was confirmed using attenuated total reflectance infrared spectroscopy; Raman mapping demonstrated that modification was homogenous on the macroscopic scale. The influence of fluorination on surface hydrophobicity was studied by contact angle analysis. The effect on microbial adherence was examined using Pseudomonas aeruginosa and Staphylococcus aureus.

KEY FINDINGS: The resultant changes in contact angle relative to control PVC ranged from -4 degrees to +14 degrees . In all cases, adherence of P. aeruginosa and S. aureus was significantly reduced relative to control PVC, with adherence levels ranging from 62% and 51% for TFTP-modified PVC to 32% and 7% for TFMTP-modified PVC.

CONCLUSIONS: These results demonstrate an important method in reducing the incidence of bacterial infection in PVC medical devices without compromising mechanical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synopsis
Objectives

To exploit the microbial ecology of bacterial metabolite production and, specifically, to: (i) evaluate the potential use of the pigments prodigiosin and violacein as additives to commercial sunscreens for protection of human skin, and (ii) determine antioxidant and antimicrobial activities (against pathogenic bacteria) for these two pigments.

Methods
Prodigiosin and violacein were used to supplement extracts of Aloe vera leaf and Cucumis sativus (cucumber) fruit which are known to have photoprotective activity, as well as some commercial sunscreen preparations. For each, sunscreen protection factors (SPFs) were determined spectrophotometrically. Assays for antimicrobial activity were carried out using 96-well plates to quantify growth inhibition of Staphylococcus aureus and Escherichia coli.
Results
For the plant extracts, SPFs were increased by an order of magnitude (i.e. up to ~3.5) and those for the commercial sunscreens increased by 10–22% (for 4% w/w violacein) and 20–65% (for 4% w/w prodigiosin). The antioxidant activities of prodigiosin and violacein were approximately 30% and 20% those of ascorbic acid (a well-characterized, potent antioxidant). Violacein inhibited S. aureus (IC506.99 ± 0.146 μM) but not E. coli, whereas prodigiosin was effective against both of these bacteria (IC50 values were 0.68 ± 0.06 μM and 0.53 ± 0.03 μM, respectively).

Conclusion
The bacterial pigments prodigiosin and violacein exhibited antioxidant and antimicrobial activities and were able to increase the SPF of commercial sunscreens as well as the extracts of the two plant species tested. These pigments have potential as ingredients for a new product range of and, indeed, represent a new paradigm for sunscreens that utilize substances of biological origin. We discussed the biotechnological potential of these bacterial metabolites for use in commercial sunscreens, and the need for studies of mammalian cells to determine safety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical model for bacterial accumulation in a discrete fractllre has been developed. The transport and accumlllation processes incorporate into the model include advection, dispersion, rate-limited adsorption, rate-limited desorption, irreversible adsorption, attachment, detachment, growth and first order decay botl1 in sorbed and aqueous phases. An analytical solution in Laplace space is derived and nlln1erically inverted. The model is implemented in the code BIOFRAC vvhich is written in Fortran 99. The model is derived for two phases, Phase I, where adsorption-desorption are dominant, and Phase II, where attachment-detachment are dominant. Phase I ends yvhen enollgh bacteria to fully cover the substratllm have accllillulated. The model for Phase I vvas verified by comparing to the Ogata-Banks solution and the model for Phase II was verified by comparing to a nonHomogenous version of the Ogata-Banks solution. After verification, a sensitiv"ity analysis on the inpllt parameters was performed. The sensitivity analysis was condllcted by varying one inpllt parameter vvhile all others were fixed and observing the impact on the shape of the clirve describing bacterial concentration verSllS time. Increasing fracture apertllre allovvs more transport and thus more accllffilliation, "Vvhich diminishes the dllration of Phase I. The larger the bacteria size, the faster the sllbstratum will be covered. Increasing adsorption rate, was observed to increase the dllration of Phase I. Contrary to the aSSllmption ofllniform biofilm thickness, the accllffilliation starts frOll1 the inlet, and the bacterial concentration in aqlleous phase moving towards the olitiet declines, sloyving the accumulation at the outlet. Increasing the desorption rate, redllces the dliration of Phase I, speeding IIp the accllmlilation. It was also observed that Phase II is of longer duration than Phase I. Increasing the attachment rate lengthens the accliffililation period. High rates of detachment speeds up the transport. The grovvth and decay rates have no significant effect on transport, althollgh increases the concentrations in both aqueous and sorbed phases are observed. Irreversible adsorption can stop accllillulation completely if the vallIes are high.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method is presented for determining the time to first division of individual bacterial cells growing on agar media. Bacteria were inoculated onto agar-coated slides and viewed by phase-contrast microscopy. Digital images of the growing bacteria were captured at intervals and the time to first division estimated by calculating the "box area ratio". This is the area of the smallest rectangle that can be drawn around an object, divided by the area of the object itself. The box area ratios of cells were found to increase suddenly during growth at a time that correlated with cell division as estimated by visual inspection of the digital images. This was caused by a change in the orientation of the two daughter cells that occurred when sufficient flexibility arose at their point of attachment. This method was used successfully to generate lag time distributions for populations of Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa, but did not work with the coccoid organism Staphylococcus aureus. This method provides an objective measure of the time to first cell division, whilst automation of the data processing allows a large number of cells to be examined per experiment. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined by means of scanning electron microscopy (SEM), the attachment of Streptococcus mutans and the corrosion of cast commercially pure titanium, used in dental dentures. The sample discs were cast in commercially pure titanium using the vacuum-pressure machine (Rematitan System). The surfaces of each metal were ground and polished with sandpaper (#300-4000) and alumina paste (0.3 μm). The roughness of the surface (Ra) was measured using the Surfcorder rugosimeter SE 1700. Four coupons were inserted separately into Falcon tubes contained Mueller Hinton broth inoculated with S. mutans ATCC 25175 (109 cuf) and incubated at 37 °C. The culture medium was changed every three days during a 365-day period, after which the falcons were prepared for observations by SEM. The mean Ra value of CP Ti was 0.1527 μm. After S. mutans biofilm removal, pits of corrosion were observed. Despite the low roughness, S. mutans attachment and biofilm formation was observed, which induced a surface corrosion of the cast pure titanium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial cellulose (BC) and silk fibroin (SF) are natural biopolymers successfully applied in tissue engineering and biomedical fields. In this work nanocomposites based on BC and SF were prepared and characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). In addition, the investigation of cytocompatibility was done by MTT, XTT and Trypan Blue dye technique. Cellular adhesion and proliferation were detected additionally. The evaluation of genotoxicity was realized by micronucleus assay. In vitro tests showed that the material is non-cytotoxic or genotoxic. SEM images revealed a greater number of cells attached at the BC/SF:50% scaffold surface than the pure BC one, suggesting that the presence of fibroin improved cell attachment. This could be related to the SF amino acid sequence that acts as cell receptors facilitating cell adhesion and growth. Consequently, BC/SF:50% scaffolds configured an excellent option in bioengineering depicting its potential for tissue regeneration and cultivation of cells on nanocomposites.