996 resultados para bacterial antigen


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methods for rapid and simple analysis of lipopolysaccharide (LPS) from bacterial whole-cell lysates or membrane preparations have contributed to advancing our knowledge of the genetics of the LPS biogenesis. LPS, a major constituent of the outer membranes in Gram-negative bacteria, has a complex mechanism of synthesis and assembly that requires the coordinated participation of many genes and gene products. This chapter describes a collection of methods routinely used in our laboratory for the characterization of LPS in Escherichia coli and other bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic evidence suggests that a family of bacterial and eukaryotic integral membrane proteins (referred to as Wzx and Rft1, respectively) mediates the transbilayer movement of isoprenoid lipid-linked glycans. Recent work in our laboratory has shown that Wzx proteins involved in O-antigen lipopolysaccharide (LPS) assembly have relaxed specificity for the carbohydrate structure of the O-antigen subunit. Furthermore, the proximal sugar bound to the isoprenoid lipid carrier, undecaprenyl-phosphate (Und-P), is the minimal structure required for translocation. In Escherichia coli K-12, N-acetylglucosamine (GlcNAc) is the proximal sugar of the O16 and enterobacterial common antigen (ECA) subunits. Both O16 and ECA systems have their respective translocases, WzxO16 and WzxE, and also corresponding polymerases (WzyO16 and WzyE) and O-antigen chain-length regulators (WzzO16 and WzzE), respectively. In this study, we show that the E. coli wzxE gene can fully complement a wzxO16 translocase deletion mutant only if the majority of the ECA gene cluster is deleted. In addition, we demonstrate that introduction of plasmids expressing either the WzyE polymerase or the WzzE chain-length regulator proteins drastically reduces the O16 LPS-complementing activity of WzxE. We also show that this property is not unique to WzxE, since WzxO16 and WzxO7 can cross-complement translocase defects in the O16 and O7 antigen clusters only in the absence of their corresponding Wzz and Wzy proteins. These genetic data are consistent with the notion that the translocation of O-antigen and ECA subunits across the plasma membrane and the subsequent assembly of periplasmic O-antigen and ECA Und-PP-linked polymers depend on interactions among Wzx, Wzz, and Wzy, which presumably form a multiprotein complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PglB oligosaccharyltransferase (OTase) of Campylobacter jejuni can be functionally expressed in Escherichia coli, and its relaxed oligosaccharide substrate specificity allows the transfer of different glycans from the lipid carrier undecaprenyl pyrophosphate to an acceptor protein. To investigate the substrate specificity of PglB, we tested the transfer of a set of lipid-linked polysaccharides in E. coli and Salmonella enterica serovar Typhimurium. A hexose linked to the C-6 of the monosaccharide at the reducing end did not inhibit the transfer of the O antigen to the acceptor protein. However, PglB required an acetamido group at the C-2. A model for the mechanism of PglB involving this functional group was proposed. Previous experiments have shown that eukaryotic OTases have the same requirement, suggesting that eukaryotic and prokaryotic OTases catalyze the transfer of oligosaccharides by a conserved mechanism. Moreover, we demonstrated the functional transfer of the C. jejuni glycosylation system into S. enterica. The elucidation of the mechanism of action and the substrate specificity of PglB represents the foundation for engineering glycoproteins that will have an impact on biotechnology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an important opportunistic pathogen of patients with cystic fibrosis. This bacterium is inherently resistant to a wide range of antimicrobial agents, including high concentrations of antimicrobial peptides. We hypothesized that the lipopolysaccharide (LPS) of B. cenocepacia is important for both virulence and resistance to antimicrobial peptides. We identified hldA and hldD genes in B. cenocepacia strain K56-2. These two genes encode enzymes involved in the modification of heptose sugars prior to their incorporation into the LPS core oligosaccharide. We constructed a mutant, SAL1, which was defective in expression of both hldA and hldD, and by performing complementation studies we confirmed that the functions encoded by both of these B. cenocepacia genes were needed for synthesis of a complete LPS core oligosaccharide. The LPS produced by SAL1 consisted of a short lipid A-core oligosaccharide and was devoid of O antigen. SAL1 was sensitive to the antimicrobial peptides polymyxin B, melittin, and human neutrophil peptide 1. In contrast, another B. cenocepacia mutant strain that produced complete lipid A-core oligosaccharide but lacked polymeric O antigen was not sensitive to polymyxin B or melittin. As determined by the rat agar bead model of lung infection, the SAL1 mutant had a survival defect in vivo since it could not be recovered from the lungs of infected rats 14 days postinfection. Together, these data show that the B. cenocepacia LPS inner core oligosaccharide is needed for in vitro resistance to three structurally unrelated antimicrobial peptides and for in vivo survival in a rat model of chronic lung infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salmonella enterica serovar Typhi causes typhoid fever in humans. Central to the pathogenicity of serovar Typhi is its capacity to invade intestinal epithelial cells. The role of lipopolysaccharide (LPS) in the invasion process of serovar Typhi is unclear. In this work, we constructed a series of mutants with defined deletions in genes for the synthesis and polymerization of the O antigen (wbaP, wzy, and wzz) and the assembly of the outer core (waaK, waaJ, waaI, waaB, and waaG). The abilities of each mutant to associate with and enter HEp-2 cells and the importance of the O antigen in serum resistance of serovar Typhi were investigated. We demonstrate here that the presence and proper chain length distribution of the O-antigen polysaccharide are essential for serum resistance but not for invasion of epithelial cells. In contrast, the outer core oligosaccharide structure is required for serovar Typhi internalization in HEp-2 cells. We also show that the outer core terminal glucose residue (Glc II) is necessary for efficient entry of serovar Typhi into epithelial cells. The Glc I residue, when it becomes terminal due to a polar insertion in the waaB gene affecting the assembly of the remaining outer core residues, can partially substitute for Glc II to mediate bacterial entry into epithelial cells. Therefore, we conclude that a terminal glucose in the LPS core is a critical residue for bacterial recognition and internalization by epithelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Campylobacter jejuni has a general N-linked protein glycosylation system that can be functionally transferred to Escherichia coli. In this study, we engineered E. coli cells in a way that two different pathways, protein N-glycosylation and lipopolysaccharide (LPS) biosynthesis, converge at the step in which PglB, the key enzyme of the C. jejuni N-glycosylation system, transfers O polysaccharide from a lipid carrier (undecaprenyl pyrophosphate) to an acceptor protein. PglB was the only protein of the bacterial N-glycosylation machinery both necessary and sufficient for the transfer. The relaxed specificity of the PglB oligosaccharyltransferase toward the glycan structure was exploited to create novel N-glycan structures containing two distinct E. coli or Pseudomonas aeruginosa O antigens. PglB-mediated transfer of polysaccharides might be valuable for in vivo production of O polysaccharides-protein conjugates for use as antibacterial vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors previously reported increased expression of the Salmonella enterica serovar Typhi (S. typhi) rfaH gene when the bacterial cells reach stationary phase. In this study, using a lacZ fusion to the rfaH promoter region, they demonstrate that growth-dependent regulation of rfaH expression occurs at the level of transcription initiation. It was also observed that production of the lipopolysaccharide (LPS) O-antigen by S. typhi Ty2 correlated with the differential expression of rfaH during bacterial growth. This was probably due to the increased cellular levels of RfaH, since expression of the distal gene in the O-antigen gene cluster of S. typhi Ty2, wbaP, was also increased during stationary growth, as demonstrated by RT-PCR analysis. Examination of the sequences upstream of the rfaH coding region revealed homologies to potential binding sites for the RcsB/RcsA dimer of the RcsC/YopJ/RcsB phosphorelay regulatory system and for the RpoN alternative sigma factor. The expression of the rfaH gene in rpoN and rcsB mutants of S. typhi Ty2 was measured. The results indicate that inactivation of rpoN, but not of rcsB, suppresses the growth-phase-dependent induction of rfaH expression. Furthermore, production of beta-galactosidase mediated by the rfaH-lacZ fusion increased approximately fourfold when bacteria were grown in a nitrogen-limited medium. Nitrogen limitation was also shown to increase the expression of the O-antigen by the wild-type S. typhi Ty2, as demonstrated by a similar electrophoretic profile to that observed during the stationary phase of growth in rich media. It is therefore concluded that the relationship between LPS production and nitrogen limitation parallels the pattern of rfaH regulation under the control of RpoN and is consistent with the idea that RpoN modulates LPS formation via its effect on rfaH gene expression during bacterial growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The O-antigen lipopolysaccharides on bacterial surface contain variable number of oligosaccharide repeat units with their length having a modal distribution specific to the bacterial strain. The polysaccharide length distribution is controlled by the proteins called polysaccharide co-polymerases (PCPs), which are embedded in the inner membrane in Gram-negative bacteria and form homo oligomers. The 3D structures of periplasmic domains of several PCPs have been determined and provided the first insights into the possible mechanism of polysaccharide length determination mechanism. Here we review the current knowledge of structure and function of these polysaccharide length regulators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The innate immune system plays a critical role in the defense of areas exposed to microorganisms. There is an increasing body of evidence indicating that antimicrobial peptides and proteins (APs) are one of the most important weapons of this system and that they make up the protective front for the respiratory tract. On the other hand, it is known that pathogenic organisms have developed countermeasures to resist these agents such as reducing the net negative charge of the bacterial membranes. Here we report the characterization of a novel mechanism of resistance to APs that is dependent on the bacterial capsule polysaccharide (CPS). Klebsiella pneumoniae CPS mutant was more sensitive than the wild type to human neutrophil defensin 1, beta-defensin 1, lactoferrin, protamine sulfate, and polymyxin B. K. pneumoniae lipopolysaccharide O antigen did not play an important role in AP resistance, and CPS was the only factor conferring protection against polymyxin B in strains lacking O antigen. In addition, we found a significant correlation between the amount of CPS expressed by a given strain and the resistance to polymyxin B. We also showed that K. pneumoniae CPS mutant bound more polymyxin B than the wild-type strain with a concomitant increased in the self-promoted pathway. Taken together, our results suggest that CPS protects bacteria by limiting the interaction of APs with the surface. Finally, we report that K. pneumoniae increased the amount of CPS and upregulated cps transcription when grown in the presence of polymyxin B and lactoferrin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS) is a glycolipid present in the outer membrane of all Gram-negative bacteria, and it is one of the signature molecules recognized by the receptors of the innate immune system. In addition to its lipid A portion (the endotoxin), its O-chain polysaccharide (the O-antigen) plays a critical role in the bacterium-host interplay and, in a number of bacterial pathogens, it is a virulence factor. We present evidence that, in Yersinia enterocolitica serotype O:8, a complex signalling network regulates O-antigen expression in response to temperature. Northern blotting and reporter fusion analyses indicated that temperature regulates the O-antigen expression at the transcriptional level. Promoter cloning showed that the O-antigen gene cluster contains two transcriptional units under the control of promoters P(wb1) and P(wb2). The activity of both promoters is under temperature regulation and is repressed in bacteria grown at 37 degrees C. We demonstrate that the RosA/RosB efflux pump/potassium antiporter system and Wzz, the O-antigen chain length determinant, are indirectly involved in the regulation mainly affecting the activity of promoter P(wb2). The rosAB transcription, under the control of P(ros), is activated at 37 degrees C, and P(wb2) is repressed through the signals generated by the RosAB system activation, i.e. decreased [K+] and increased [H+]. The wzz transcription is under the control of P(wb2), and we show that, at 37 degrees C, overexpression of Wzz downregulates slightly the P(wb1) and P(wb2) activities and more strongly the P(ros) activity, with the net result that more O-antigen is produced. Finally, we demonstrate that overexpression of Wzz causes membrane stress that activates the CpxAR two-component signal transduction system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The O-antigen of lipopolysaccharide (LPS) is required for virulence in Yersinia enterocolitica serotype O:8. Here we evaluated the importance of controlling the O-antigen biosynthesis using an in vivo rabbit model of infection. Y. enterocolitica O:8 wild-type strain was compared to three mutants differing in the O-antigen phenotype: (i) the rough strain completely devoid of the O-antigen, (ii) the wzy strain that lacks the O-antigen polymerase (Wzy protein) and expresses LPS with only one repeat unit, and (iii) the wzz strain that lacks the O-antigen chain length determinant (Wzz protein) and expresses LPS without modal distribution of O-antigen chain lengths. The most attenuated strain was the wzz mutant. The wzz bacteria were cleared from the tissues by day 30, the blood parameters were least dramatic and histologically only immunomorphological findings were seen. The level of attenuation of the rough and the wzy strain bacteria was between the wild-type and the wzz strain. Wild-type bacteria were highly resistant to killing by polymorphonuclear leukocytes, the wzz strain bacteria were most sensitive and the rough and wzy strain bacteria were intermediate resistant. These results clearly demonstrated that the presence of O-antigen on the bacterial surface is not alone sufficient for full virulence, but also there is a requirement for its controlled chain length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Streptococcus pyogenes is the causative agent of numerous diseases ranging from benign infections (pharyngitis and impetigo) to severe infections associated with high mortality (necrotizing fasciitis and bacterial sepsis). As with other bacterial infections, there is considerable interest in characterizing the contribution of interleukin-17A (IL-17A) responses to protective immunity. We here show significant il17a up-regulation by quantitative real-time PCR in secondary lymphoid organs, correlating with increased protein levels in the serum within a short time of S. pyogenes infection. However, our data offer an important caveat to studies of IL-17A responsiveness following antigen inoculation, because enhanced levels of IL-17A were also detected in the serum of sham-infected mice, indicating that inoculation trauma alone can stimulate the production of this cytokine. This highlights the potency and speed of innate IL-17A immune responses after inoculation and the importance of proper and appropriate controls in comparative analysis of immune responses observed during microbial infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Biologia Celular e Molecular), Universidade de Lisboa, Faculdade de Farmácia, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MHCII molecules expose a weave of antigens, which send survival or activation signals to T lymphocytes. The ongoing process of peptide binding to the MHC class II groove implicates three accessory molecules: the invariant chain, DM and DO. The invariant chain folds and directs the MHCII molecules to the endosomal pathway. Then, DM exchanges the CLIP peptide, which is a remnant of the degraded invariant chain, for peptides of better affinity. Expressed in highly specialized antigen presenting cells, DO competes with MHCII molecules for DM binding and favors the presentation of receptor-internalized antigens. Altogether, these molecules exhibit potential immunomodulatory properties that can be exploited to increase the potency of peptide vaccines. DO requires DM for maturation and to exit the ER. Interestingly, it is possible to monitor this interaction through a conformation change on DOβ that is recognized by the Mags.DO5 monoclonal antibody. Using Mags.DO5, we showed that DM stabilizes the interactions between the DO α1 and β1 chains and that DM influences DO folding in the ER. Thus, the Mags.DO5+ conformation correlates with DO egress from the ER. To further evaluate this conformation change, directed evolution was applied to DO. Of the 41 unique mutants obtained, 25% were localized at the DM-DO binding interface and 12% are at the solvent-exposed β1 domain, which is thought to be the Mags.DO5 epitope. In addition, I used the library to test the ability of HLA-DO to inhibit HLA-DM and sorted for the amount of CLIP. Interestingly, most of the mutants showed a decrease inhibitory effect, supporting the notion that the intrinsic instability of DO is a required for its function. Finally, these results support the model in which DO competes against classical MHCII molecules by sequestering DM chaperone’s function. MHCII molecules are also characterized by their ability to present superantigens, a group of bacterial or viral toxins that coerces MHCII-TCR binding in a less promiscuous fashion than what is observed in a canonical setting. While the mechanism of how bacterial superantigens form trimeric complexes with TCR and MHCII is well understood, the mouse mammary tumor virus superantigens (vSAG) are poorly defined. In the absence of a crystal structure, I chose a functional approach to examine the relation between vSAG, MHCII and TCR with the goal of uncovering the overall trimolecular architecture. I showed that TCR concomitantly binds both the MHCII α chain and the vSAG and that TCR-MHCII docking is almost canonical when coerced by vSAGs. Because many peptides may be tolerated in the MHCII groove, the pressure exerted by vSAG seems to tweak conventional TCR-MHCII interactions. Furthermore, my results demonstrate that vSAG binding to MHCII molecules is conformation-dependent and abrogated by the CLIP amino-terminal residues extending outside the peptide-binding groove. In addition, they also suggest that vSAGs cross-link adjacent MHCIIs and activate T cells via a TGXY motif.