183 resultados para b1H-adrenoceptors


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was undertaken to identify the alpha-adrenergic receptor type responsible for sympathetically evoked mydriasis in pentobarbital-anesthetized rabbits. Frequency-response curves of pupillary dilation were generated by stimulation of the preganglionic cervical sympathetic nerve (1-64 Hz). Evoked mydriatic responses were inhibited by systemic administration of nonselective alpha-adrenergic antagonists, phentolamine (0.3-10 mg/kg) and phenoxybenzamine (0.03-0.3 mg/kg), as well as the selective alpha(1)-adrenergic antagonist, prazosin (0.1-1 mg/kg). The alpha(2)-adrenergic antagonist, RS 79948 (0.3 mg/kg, i.v.) was without inhibitory effect, but potentiated the mydriatic response. In addition, the selective alpha(1A)-adrenoceptor antagonist, 5-methylurapidil (0.1-1 mg/kg, i.v.), antagonized the elicited mydriasis in a dose-dependent fashion. Unlike previous observations that prazosin does not block the adrenoceptor in rabbit iris dilator muscle, our results suggest that prazosin is effective in inhibiting neuronally elicited mydriasis in this species, and that alpha(1A)-adrenoceptors appear to mediate the response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La dépression est une pathologie grave qui, malgré de multiples stratégies thérapeutiques, demeure résistante chez un tiers des patients. Les techniques de stimulation cérébrale sont devenues une alternative intéressante pour les patients résistants à diverses pharmacothérapies. La stimulation du nerf vague (SNV) a ainsi fait preuve de son efficacité en clinique et a récemment été approuvée comme traitement additif pour la dépression résistante. Cependant, les mécanismes d’action de la SNV en rapport avec la dépression n’ont été que peu étudiés. Cette thèse a donc eu comme premier objectif de caractériser l’impact de la SNV sur les différents systèmes monoaminergiques impliqués dans la pathophysiologie de la dépression, à savoir la sérotonine (5-HT), la noradrénaline (NA) et la dopamine (DA), grâce à l’utilisation de techniques électrophysiologiques et de la microdialyse in vivo chez le rat. Des études précliniques avaient déjà révélé qu’une heure de SNV augmente le taux de décharge des neurones NA du locus coeruleus, et que 14 jours de stimulation sont nécessaires pour observer un effet comparable sur les neurones 5-HT. Notre travail a démontré que la SNV modifie aussi le mode de décharge des neurones NA qui présente davantage de bouffées, influençant ainsi la libération terminale de NA, qui est significativement augmentée dans le cortex préfrontal et l’hippocampe après 14 jours. L’augmentation de la neurotransmission NA s’est également manifestée par une élévation de l’activation tonique des récepteurs postsynaptiques α2-adrénergiques de l’hippocampe. Après lésion des neurones NA, nous avons montré que l’effet de la SNV sur les neurones 5-HT était indirect, et médié par le système NA, via l’activation des récepteurs α1-adrénergiques présents sur les neurones du raphé. Aussi, tel que les antidépresseurs classiques, la SNV augmente l’activation tonique des hétérorécepteurs pyramidaux 5-HT1A, dont on connait le rôle clé dans la réponse thérapeutique aux antidépresseurs. Par ailleurs, nous avons constaté que malgré une diminution de l’activité électrique des neurones DA de l’aire tegmentale ventrale, la SNV induit une augmentation de la DA extracellulaire dans le cortex préfrontal et particulièrement dans le noyau accumbens, lequel joue un rôle important dans les comportements de récompense et l’hédonie. Un deuxième objectif a été de caractériser les paramètres optimaux de SNV agissant sur la dépression, en utilisant comme indicateur le taux de décharge des neurones 5-HT. Des modalités de stimulation moins intenses se sont avérées aussi efficaces que les stimulations standards pour augmenter l’activité électrique des neurones 5-HT. Ces nouveaux paramètres de stimulation pourraient s’avérer bénéfiques en clinique, chez des patients ayant déjà répondu à la SNV. Ils pourraient minimiser les effets secondaires reliés aux périodes de stimulation et améliorer ainsi la qualité de vie des patients. Ainsi, ces travaux de thèse ont caractérisé l’influence de la SNV sur les trois systèmes monoaminergiques, laquelle s’avère en partie distincte de celle des antidépresseurs classiques tout en contribuant à son efficacité en clinique. D’autre part, les modalités de stimulation que nous avons définies seraient intéressantes à tester chez des patients recevant la SNV, car elles devraient contribuer à l’amélioration des bénéfices cliniques de cette thérapie.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El dolor oncológico representa una de las principales causas de dolor crónico, siendo los opioides la primera línea de manejo, sin embargo 10% de los pacientes requieren estrategias analgésicas multimodales. La eficacia analgésica de la clonidina como coadyuvante ha sido demostrada para diversos modelos de dolor. Sin embargo no hay revisiones sistemáticas que validen su eficacia y seguridad en dolor crónico oncológico. Se realizó una revisión sistemática de la literatura a noviembre 26 de 2012, encontrando 15 trabajos (12 reportes de caso y tres ensayos clínicos controlados), n=138 pacientes. La intervención tuvo una eficacia entre 44,7 y 100%, mostrando mayor beneficio en pacientes con componente de dolor neuropático. La adición de clonidina fue bien tolerada, siendo la sedación y la disminución en tensión arterial y frecuencia cardiaca los efectos secundarios más frecuentes, con relación dosis dependiente, de resolución espontánea y en ninguno de los casos se documentó lesión secundaria en los pacientes. La vía de administración más frecuente fue neuroaxial (intratecal y peridural). La revisión sistemática no fue susceptible de metaanálisis por la heterogeneidad clínica de los estudios. Los resultados obtenidos sugieren que la adición de clonidina puede ser una opción terapeútica eficaz y segura en los pacientes con dolor crónico oncológico severo refractario a opioides a altas dosis asociado o no a infusión neuroaxial de anestésico local, en especial en presencia de componente neuropático. Sin embargo se identificó la necesidad de un mayor número de ensayos clínicos controlados aleatorios que permitan establecer conclusiones definitivas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Revisión sistemática de la literatura tomando ensayos clínicos aleatorizados sobre el uso de la inyección intraprostática de la toxina botulínica en los pacientes con hiperplasia prostática benigna evaluando una escala validada de síntomas del tracto urinario bajo como desenlace primario

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activation of presynaptic G protein-coupled receptors (GPCRs) is widely reported to inhibit transmitter release; however, the lack of accessibility of many presynaptic terminals has limited direct analysis of signalling mediators. We studied GPCR-mediated inhibition of fast cholinergic transmission between superior cervical ganglion neurones (SCGNs) in culture. The adrenoceptor agonist noradrenaline (NA) caused a dose-related reduction in evoked excitatory postsynaptic potentials (EPSPs). NA-induced EPSP decrease was accompanied by effects on the presynaptic action potential (AP), reducing AP duration and amplitude of the after-hyperpolarization (AHP), without affecting the pre- and postsynaptic membrane potential. All effects of NA were blocked by yohimbine and synaptic transmission was reduced by clonidine, consistent with an action at presynaptic alpha 2-adrenoceptors. NA-induced inhibition of transmission was sensitive to pre-incubation of SCGNs with pertussis toxin (PTX), implicating the involvement of G alpha(i)/(o)beta y subunits. Expression of G alpha transducin, an agent which sequesters G protein beta gamma (G beta y) subunits, in the presynaptic neurone caused a time-dependent attenuation of NA-induced inhibition. Injection of purified G beta gamma subunits into the presynaptic neurone inhibited transmission, and also reduced the AHP amplitude. Furthermore, NA-induced inhibition was occluded by pre-injection of G beta gamma subunits. The Ca2+ channel blocker Cd2+ mimicked NA effects on transmitter release. Cd2+, NA and G beta gamma subunits also inhibited somatic Ca2+ current. In contrast to effects on AP-evoked transmitter release, NA had no clear action on AP-independent EPSPs induced by hypertonic solutions. These results demonstrate that G beta gamma subunits functionally mediate inhibition of transmitter release by alpha 2-adrenoceptors and represent important regulators of synaptic transmission at mammalian presynaptic terminals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies in non-cardiomyocytic cells have shown that phosphorylation of the Bcl-2 family protein Bad on Ser-112, Ser-136 and Ser-155 decreases its pro-apoptotic activity. Both phenylephrine (100 microM) and the cell membrane-permeating cAMP analog, 8-(4-chlorophenylthio)-cAMP (100 microM), protected against 2-deoxy-D-glucose-induced apoptosis in neonatal rat cardiac myocytes as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). In cardiac myocytes, phenylephrine primarily stimulates the alpha-adrenoceptor, but, at high concentrations (100 microM), it also increases the activity of the cAMP-dependent protein kinase, protein kinase A (PKA) through the beta-adrenoceptor. Phenylephrine (100 microM) promoted rapid phosphorylation of Bad(Ser-112) and Bad(Ser-155), though we were unable to detect phosphorylation of Bad(Ser-136). Phosphorylation of Bad(Ser-112) was antagonized by either prazosin or propranolol, indicating that this phosphorylation required stimulation of both alpha(1)- and beta-adrenoceptors. Phosphorylation of Bad(Ser-155) was antagonized only by propranolol and was thus mediated through the beta-adrenoceptor. Inhibitor studies and partial purification of candidate kinases by fast protein liquid chromatography showed that the p90 ribosomal S6 kinases, p90RSK2/3 [which are activated by the extracellular signal-regulated kinases 1 and 2 (ERK1/2)] directly phosphorylated Bad(Ser-112), whereas the PKA catalytic subunit directly phosphorylated Bad(Ser-155). However, efficient phosphorylation of Bad(Ser-112) also required PKA activity. These data suggest that, although p90RSK2/3 phosphorylate Bad(Ser-112) directly, phosphorylation of this site is enhanced by phosphorylation of Bad(Ser-155). These phosphorylations potentially diminish the pro-apoptotic activity of Bad and contribute to the cytoprotective effects of phenylephrine and 8-(4-chlorophenylthio)-cAMP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adenosine acts in the nucleus tractus solitarii (NTS), one of the main brain sites related to cardiovascular control. In the present study we show that A(1) adenosine receptor (A(1R)) activation promotes an increase on alpha(2)-adrenoceptor (Alpha(2R)) binding in brainstem cell culture from newborn rats. We investigated the intracellular cascade involved in such modulatory process using different intracellular signaling molecule inhibitors as well as calcium chelators. Phospholipase C, protein kinase Ca(2+)-dependent, IP(3) receptor and intracellular calcium were shown to participate in A(1R)/Alpha(2R) interaction. In conclusion, this result might be important to understand the role of adenosine within the NTS regarding autonomic cardiovascular control. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The venom gland of viperid snakes has a central lumen where the venom produced by secretory cells is stored. When the venom is lost from the gland, the secretory cells are activated and new venom is produced. The production of new venom is triggered by the action of noradrenaline on both alpha(1)- and beta-adrenoceptors in the venom gland. In this study, we show that venom removal leads to the activation of transcription factors NF kappa B and AP-1 in the venom gland. In dispersed secretory cells, noradrenaline activated both NF kappa B and AP-1. Activation of NF kappa B and AP-1 depended on phospholipase C and protein kinase A. Activation of NF kappa B also depended on protein kinase C. Isoprenaline activated both NF kappa B and AP-1, and phenylephrine activated NF kappa B and later AP-1. We also show that the protein composition of the venom gland changes during the venom production cycle. Striking changes occurred 4 and 7 days after venom removal in female and male snakes, respectively. Reserpine blocks this change, and the administration of alpha(1)- and beta-adrenoceptor agonists to reserpine-treated snakes largely restores the protein composition of the venom gland. However, the protein composition of the venom from reserpinized snakes treated with alpha(1)- or beta-adrenoceptor agonists appears normal, judging from SDS-PAGE electrophoresis. A sexual dimorphism in activating transcription factors and activating venom gland was observed. Our data suggest that the release of noradrenaline after biting is necessary to activate the venom gland by regulating the activation of transcription factors and consequently regulating the synthesis of proteins in the venom gland for venom production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we investigated the role of noradrenergic transmission in unconditioned and conditioned responses to predatory threats. First, we examined the effects of systemically injected beta-blockers on unconditioned and contextual conditioned response to cat odor. The centrally acting beta-blocker (propranolol) was able to impair unconditioned responses, as well as the acquisition of the contextual fear to cat odor; however, the peripherally acting (nadolol) was not effective. Next, we examined the neural substrate underlying the noradrenergic modulation of the defensive response to cat odor and focused on the dorsal premammillary nucleus (PMd), because it represents the hypothalamic site most responsive to predatory threats and, at the same time, presents a dense plexus of noradrenergic fibers. We were able to see that propranolol significantly reduced PMd-Fos expression in response to cat odor and that beta-adrenoceptor blockade in the PMd, before cat odor exposure, reduced defensive responses to the cat odor and to the cat odor-related environment. We have also shown that beta-adrenoceptor blockade in the PMd, before the exposure to cat odor-related context, impaired the contextual conditioned responses. Overall, the present results provide convincing evidence suggesting that central noradrenergic mediation is critical for the expression of unconditioned and contextual conditioned antipredatory responses. We have further shown that the PMd appears to be an important locus to mediate these beta-adrenoceptor effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the effect of overstimulation of beta-adrenoceptors on vascular inflammatory mediators. Wistar rats were treated with the beta-adrenoceptor agonist isoproterenol (0.3 mg(.)kg(-1.)day(-1) sc) or vehicle (control) for 7 days. At the end of treatment, the right carotid artery was catheterized for arterial and left ventricular (LV) hemodynamic evaluation. Isoproterenol treatment increased LV weight but did not change hemodynamic parameters. Aortic mRNA and protein expression were quantified by real-time RT-PCR and Western blot analysis, respectively. Isoproterenol enhanced aortic mRNA and protein expression of IL-1 beta (124% and 125%) and IL-6 (231% and 40%) compared with controls but did not change TNF-alpha expression. The nuclear-to-cytoplasmatic protein expression ration of the NF-beta B p65 subunit was increased by isoproterenol treatment (51%); in addition, it reduced the cytoplasmatic expression of I kappa B-alpha (52%) in aortas. An electrophoretic mobility shift assay was performed using the aorta, and increased NF-kappa B DNA binding (31%) was observed in isoproterenol-treated rats compared with controls (P < 0.05). Isoproterenol treatment increased phenylephrine-induced contraction in aortic rigs (P < 0.05), which was significantly reduced by superoxide dismutase (150 U/ml) and sodium salicylate (5 mM). Cotreatment with thalidomide (150 mg(.)kg(-1.)day(-1) for 7 days) also reduced hyperreactivity to phenylephrine induced by isoproterenol. In conclusion, overstimulation of beta-adrenoceptors increased proinflammatory cytokines and upregulated NF-kappa B in the rat aorta. Moreover, local oxidative stress and the proinflammatory state seem to play key roles in the altered vascular reactivity of the rat aorta induced by chronic beta-adrenergic stimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: Overactive bladder is a complex and widely prevalent condition, but little is known about its physiopathology. We have carried out morphological, biochemical and functional assays to investigate the effects of long-term nitric oxide (NO) deficiency on muscarinic receptor and beta-adrenoceptor modulation leading to overactivity of rat detrusor muscle. Experimental approach: Male Wistar rats received No-nitro-L-arginine methyl ester (L-NAME) in drinking water for 7-30 days. Functional responses to muscarinic and b-adrenoceptor agonists were measured in detrusor smooth muscle (DSM) strips in Krebs-Henseleit solution. Measurements of [H-3] inositol phosphate, NO synthase (NOS) activity, [H-3] quinuclidinyl benzilate ([H-3]QNB) binding and bladder morphology were also performed. Key results: Long-term L-NAME treatment significantly increased carbachol-induced DSM contractile responses after 15 and 30 days; relaxing responses to the beta(3)-adrenoceptor agonist BRL 37-344 were significantly reduced at 30 days. Constitutive NOS activity in bladder was reduced by 86% after 7 days and maintained up to 30 days of L-NAME treatment. Carbachol increased sixfold the [H-3] inositol phosphate in bladder tissue from rats treated with L-NAME. [H-3] QNB was bound with an apparent KD twofold higher in bladder membranes after L-NAME treatment compared with that in control. No morphological alterations in DSM were found. Conclusions and implications: Long-term NO deficiency increased rat DSM contractile responses to a muscarinic agonist, accompanied by significantly enhanced KD values for muscarinic receptors and [H-3] inositol phosphate accumulation in bladder. This supersensitivity for muscarinic agonists along with reductions of beta(3)-adrenoceptor-mediated relaxations indicated that overactive DSM resulted from chronic NO deficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic stimulation of beta-adrenoceptors with isoproterenol induces alteration of vascular reactivity and increases local proinflammatory cytokines. We investigated whether fenofibrate and pioglitazone, PPAR-alpha and -gamma agonists, respectively, improve the changes in vascular reactivity induced by isoproterenol. Wistar rats received isoproterenol (0.3 mg.kg(-1).day(-1), SC) or vehicle (CT) plus fenofibrate (alpha, 100 mg.kg(-1).day(-1), PO), pioglitazone (gamma, 2.5 mg.kg(-1).day(-1), PO), or water for 7 days. In aortas, isoproterenol treatment enhanced the maximal response (Rmax) to phenylephrine (10(-10) to 10(-4) M) compared to CT as previously demonstrated. The effects of endothelium removal (E-) or L-NAME incubation (100 mu M) on the phenylephrine response were smaller in isoproterenol-treated animals compared to CT while superoxide dismutase (SOD, 150 U/mL) significantly reduced the Rmax to phenylephrine to CT levels. Neither fenofibrate nor pioglitazone changed the effects induced by isoproterenol in aorta. E-, L-NAME, or SOD effects were similar between CT alpha and CT. However, pioglitazone per se increased Rmax to phenylephrine (CT: 59 +/- 4 versus CT gamma: 72 +/- 5 % of contraction to KCl). E- or L-NAME effects were reduced in CT gamma compared to CT, and SOD normalized the altered reactivity to phenylephrine in the CT gamma group. In conclusion, neither fenofibrate nor pioglitazone ameliorates the altered vascular reactivity present in aorta from isoproterenol-treated rats. Moreover, pioglitazone per se induced endothelial dysfunction and increased phenylephrine-induced contraction in aorta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adenosine Is known to modulate neuronal activity within the nucleus tractus solitarius (NTS). The modulatory effect of adenosine A, receptors (A(1R)) on alpha(2)-adrenoceptors (Adr(2R)) was evaluated using quantitative radioautography within NTS subnuclei and using neuronal culture of normotensive (WKY) and spontaneously hypertensive rats (SHR). Radioautography was used in a saturation experiment to measure Adr2R binding parameters (B(max), K(d)) In the presence of 3 different concentrations of N(6)-cyclopentyladenosine (CPA), an A(1R) agonist. Neuronal culture confirmed our radioautographic results. [(3)H]RX821002, an Adr(2R) antagonist, was used as a ligand for both approaches. The dorsomedial/dorsolateral subnucleus of WKY showed an increase in B(max) values (21%) Induced by 10 nmol/L of CPA. However, the subpostremal subnucleus showed a decrease in Kd values (24%) induced by 10 nmol/L of CPA. SHR showed the same pattern of changes as WKY within the same subnuclei; however, the modulatory effect of CPA was induced by I nmol/L (increased B(max), 17%; decreased K(d), 26%). Cell culture confirmed these results, because 10(-5) and 10(-7) mol/L of CPA promoted an Increase in [3H]RX821002 binding of WKY (53%) and SHR cells (48%), respectively. DPCPX, an AIR antagonist, was used to block the modulatory effect promoted by CPA with respect to Adr2R binding. In conclusion, our study shows for the first time an interaction between A(1R) that increases the binding of Adr2R within specific subnuclei of the NTS. This may be important In understanding the complex autonomic response induced by adenosine within the NTS. In addition, changes in interactions between receptors might be relevant to understanding the development of hypertension. (Hypertens Res 2008; 31: 2177-2186)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catecholamines are viewed as major stimulants of diet- and cold-induced thermogenesis and of fasting-induced lipolysis, through the β-adrenoceptors (β1/β2/β3). To test this hypothesis, we generated β1/β2/β3-adrenoceptor triple knockout (TKO) mice and compared them to wild type animals. TKO mice exhibited normophagic obesity and cold-intolerance. Their brown fat had impaired morphology and lacked responses to cold of uncoupling protein-1 expression. In contrast, TKO mice had higher circulating levels of free fatty acids and glycerol at basal and fasted states, suggesting enhanced lipolysis. Hence, β-adrenergic signalling is essential for the resistance to obesity and cold, but not for the lipolytic response to fasting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the study was to determine the effect of clenbuterol on the anaerobic-threshold of horses on a tread-mill with increasing physical stress, measuring heart rate (HR) and blood levels of lactate, glucose, and insulin. Twelve Arabian horses. were submitted to two physical tests separated by a 10-day interval. Clenbuterol (CL) at 0.8 mu g/kg or saline (control-C) was administered intravenously 30 minutes, before the test. The treadmill exercise test consisted of an initial warmup followed by a gradually increasing effort. There was no statistical difference in either V-2 or V-4 (velocity at which plasma lactate concentration reached 4 and 2 mmol/L, respectively) between the two-experimental groups. For the CL group, V-200, V-180, V-160, and V-140 (velocity at which the rate heart is 140, 160, 180, and 200 beats/minute, respectively) decreased significantly. At rest as well as times 4, 6, and 10 minutes, insulin levels were higher in the group that recieved clenbuterol (P < .05). Contrary to what was expected, apparently, there was no improvement in aerobic metabolism in animals when given a therapeutic dose of the bronchodilator. The elevated heart rate observed could have been attributable to the stimulation of cardiac beta(1) adrenoceptors and the increased insulin levels to the stimulation of pancreatic beta(2) receptors.