144 resultados para avain trypanosomes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flagellar-mediated motility is an indispensable function for cell types as evolutionarily distant as mammalian sperm and kinetoplastid parasites, a large group of flagellated protozoa that includes several important human pathogens. Despite the obvious importance of flagellar motility, little is known about the signalling processes that direct the frequency and wave shape of the flagellar beat, or those that provide the motile cell with the necessary environmental cues that enable it to aim its movement. Similarly, the energetics of the flagellar beat and the problem of a sufficient ATP supply along the entire length of the beating flagellum remain to be explored. Recent proteome projects studying the flagella of mammalian sperm and kinetoplastid parasites have provided important information and have indicated a surprising degree of similarities between the flagella of these two cell types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of many infectious diseases is under threat from drug resistance. Understanding the mechanisms of resistance is as high a priority as the development of new drugs. We have investigated the basis for cross-resistance between the diamidine and melaminophenyl arsenical classes of drugs in African trypanosomes. We induced high levels of pentamidine resistance in a line without the tbat1 gene that encodes the P2 transporter previously implicated in drug uptake. We isolated independent clones that displayed very considerable cross-resistance with melarsen oxide but not phenylarsine oxide and reduced uptake of [(3)H]pentamidine. In particular, the high-affinity pentamidine transport (HAPT1) activity was absent in the pentamidine-adapted lines, whereas the low affinity pentamidine transport (LAPT1) activity was unchanged. The parental tbat1(-/-) line was sensitive to lysis by melarsen oxide, and this process was inhibited by low concentrations of pentamidine, indicating the involvement of HAPT1. This pentamidine-inhibitable lysis was absent in the adapted line KO-B48. Likewise, uptake of the fluorescent diamidine 4',6-diamidino-2-phenylindole dihydrochloride was much delayed in live KO-B48 cells and insensitive to competition with up to 10 muM pentamidine. No overexpression of the Trypanosoma brucei brucei ATP-binding cassette transporter TbMRPA could be detected in KO-B48. We also show that a laboratory line of Trypanosoma brucei gambiense, adapted to high levels of resistance for the melaminophenyl arsenical drug melarsamine hydrochloride (Cymelarsan), had similarly lost TbAT1 and HAPT1 activity while retaining LAPT1 activity. It seems therefore that selection for resistance to either pentamidine or arsenical drugs can result in a similar phenotype of reduced drug accumulation, explaining the occurrence of cross-resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

African trypanosomes are insect-borne parasites that cause sleeping sickness in humans and nagana in domesticated animals. Successful transmission is the outcome of crosstalk between the trypanosome and its insect vector, the tsetse fly. This enables the parasite to undergo successive rounds of differentiation, proliferation and migration, culminating in the infection of a new mammalian host. Several stage- and species-specific parasite surface molecules have been identified and there are new insights into their regulation in the fly. Tsetse flies are often refractory to infection with trypanosomes. While many environmental and physiological factors are known to influence infection, our detailed understanding of tsetse-trypanosome relationships is still in its infancy. Recent studies have identified a number of tsetse genes that show altered expression patterns in response to microbial infections, some of which have also been implicated in modulating trypanosome transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protozoan pathogen Trypanosoma brucei is transmitted between mammals by tsetse flies. The first compartment colonised by trypanosomes after a blood meal is the fly midgut lumen. Trypanosomes present in the lumen-designated as early procyclic forms-express the stage-specific surface glycoproteins EP and GPEET procyclin. When the trypanosomes establish a mature infection and colonise the ectoperitrophic space, GPEET is down-regulated, and EP becomes the major surface protein of late procyclic forms. A few years ago, it was discovered that procyclic form trypanosomes exhibit social motility (SoMo) when inoculated on a semi-solid surface. We demonstrate that SoMo is a feature of early procyclic forms, and that late procyclic forms are invariably SoMo-negative. In addition, we show that, apart from GPEET, other markers are differentially expressed in these two life-cycle stages, both in culture and in tsetse flies, indicating that they have different biological properties and should be considered distinct stages of the life cycle. Differentially expressed genes include two closely related adenylate cyclases, both hexokinases and calflagins. These findings link the phenomenon of SoMo in vitro to the parasite forms found during the first 4-7 days of a midgut infection. We postulate that ordered group movement on plates reflects the migration of parasites from the midgut lumen into the ectoperitrophic space within the tsetse fly. Moreover, the process can be uncoupled from colonisation of the salivary glands. Although they are the major surface proteins of procyclic forms, EP and GPEET are not essential for SoMo, nor, as shown previously, are they required for near normal colonisation of the fly midgut.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosomes mostly regulate gene expression through post-transcriptional mechanisms, particularly mRNA stability. However, much mRNA degradation is cytoplasmic such that mRNA nuclear export must represent an important level of regulation. Ribosomal RNAs must also be exported from the nucleus and the trypanosome orthologue of NMD3 has been confirmed to be involved in rRNA processing and export, matching its function in other organisms. Surprisingly, we found that TbNMD3 depletion also generates mRNA accumulation of procyclin-associated genes (PAGs), these being co-transcribed by RNA polymerase I with the procyclin surface antigen genes expressed on trypanosome insect forms. By whole transcriptome RNA-seq analysis of TbNMD3-depleted cells we confirm the regulation of the PAG transcripts by TbNMD3 and using reporter constructs reveal that PAG1 regulation is mediated by its 5'UTR. Dissection of the mechanism of regulation demonstrates that it is not dependent upon translational inhibition mediated by TbNMD3 depletion nor enhanced transcription. However, depletion of the nuclear export factors XPO1 or MEX67 recapitulates the effects of TbNMD3 depletion on PAG mRNAs and mRNAs accumulated in the nucleus of TbNMD3-depleted cells. These results invoke a novel RNA regulatory mechanism involving the NMD3-dependent nuclear export of mRNA cargos, suggesting a shared platform for mRNA and rRNA export.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unicellular parasite Trypanosoma brucei shuttles between its definitive host, the tsetse fly, and various mammals including humans. In the fly digestive tract, T. brucei must first migrate to the ectoperitrophic space, establish a persistent infection of the midgut and then migrate to the salivary glands before being transmitted to a new mammalian host. In 2010, it was shown that insect stages of the parasite (procyclic forms) exhibit social motility (SoMo) when cultured on a semi-solid surface, and it was postulated that this behaviour might reflect a migration step in the tsetse fly. Now, almost 5 years after the initial report, several new publications shed some light on the biological function of SoMo and provide insights into the underlying signalling pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human African trypanosomiasis (sleeping sickness) is a neglected tropical disease caused by Trypanosoma brucei spp. The parasites are transmitted by tsetse flies and adapt to their different hosts and environments by undergoing a series of developmental changes. During differentiation, the trypanosome alters its protein coat. Bloodstream form trypanosomes in humans have a coat of variant surface glycoprotein (VSG) that shields them from the immune system. The procyclic form, the first life-cycle stage to develop in the tsetse fly, replaces the VSG coat by procyclins; these proteins do not protect the parasite from lysis by serum components. Our study exploits the parasite-specific process of differentiation from bloodstream to procyclic forms to screen for potential drug candidates. Using transgenic trypanosomes with a reporter gene in a procyclin locus, we established a whole-cell assay for differentiation in a medium-throughput format. We screened 7,495 drug-like compounds and identified 28 hits that induced expression of the reporter and loss of VSG at concentrations in the low micromolar range. Small molecules that induce differentiation to procyclic forms could facilitate studies on the regulation of differentiation as well as serving as scaffolds for medicinal chemistry for new treatments for sleeping sickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic cells are compartmentalized into membrane-bound organelles in order to provide sheltered reaction rooms for various specific processes. Organelles are not randomly distributed in a cell or operate isolated from each other. At the contrary — some organelles are closely linked and their functions are tightly orchestrated. The most well-known example of two such organelles acting in concert are the ER and the mitochondrion that work together in order to coordinate cellular lipid biosynthesis, maintain Ca2+-homeostasis, regulate mitochondrial division and control mitochondrial/ER shape as well as to synchronize the movement of these organelles within a cell. To study the mitochondrion and its interface to the ER requires a simplified mitochondrial system. African trypanosomes represent such a system. The unicellular parasite that causes devastating diseases in humans and animals has only one large mitochondrion that does not undergo fission/fusion events except for the context of cell division. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the protozoan. Central to the understanding of how mitochondria control their morphology, communicate with their surroundings and manage exchange of metabolites and transport of biopolymers (proteins, RNAs) is the mitochondrial outer membrane (MOM), as the MOM defines the boundary of the organelle. Recently, we have purified the MOM of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal MOM proteome consists of 82 proteins, two thirds of which have never been associated with mitochondria before. Among these, we identified novel factors required to regulate mitochondrial morphology and the long-elusive protein import machinery of T. brucei. A comparison with the MOM proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. One of these is the Miro-GTPase Gem1. In yeast, this Ca2+-EF-Hand containing polypeptide is thought to be involved in a protein complex that physically tethers the mitochondrion to the ER. Interestingly, a putative tethering complex in mammalian cells was linked to the mitochondrial fusion/fission machinery. Thus, the concept of a protein complex-mediated connection seems to be a general and conserved feature. We are currently investigating, if such a protein complex exists in T. brucei and if the trypanosomal Gem1 protein is involved. This ER-subdomain associated with mitochondria has been termed mitochondria-associated ER-membranes or MAM. The MAM has recently been implicated to play a key role in Alzheimer’s disease. It is therefore of broad and general interest to establish other eukaryotic model systems in order to investigate the MAM-MOM connection in more detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discovery of novel drug targets may lead to improved treatment of trypanosomiasis. We characterize here 2 gene products of Trypanosoma brucei that are essential for the growth of bloodstream form (BSF) parasites, as shown by RNA interference (RNAi)-mediated down-regulation of the individual mRNAs. The primary sequences of the 2 proteins--protein encoded by gene Tb927.1.4450 (TbK1) and protein encoded by gene Tb927.9.4820 (TbK2)--indicate that both belong to the family of putative, Ca(2+)-activated potassium channels. The proteins were expressed in Xenopus laevis oocytes and their functions investigated by use of electrophysiological techniques. Only combined expression of TbK1 and TbK2 results in the formation of sizeable currents, indicating that these proteins probably assemble into a heteromeric ion channel. The current mediated by this channel shows little time and voltage dependence and displays a permeability ratio of K(+)/Na(+) of >20. The known potassium channel blocker barium inhibits this channel with a half-maximal inhibitory concentration (IC50) of 98 ± 15 μM. The membrane potential of trypanosomes was measured with a fluorescent dye. Individual RNAi-mediated down-regulation of TbK1 or TbK2 eliminates a potassium conductance in the plasma membrane of BSF. Thus, this heteromeric potassium channel is involved in the modulation of the plasma membrane potential and represents a novel drug target in T. brucei.