992 resultados para arbovirus, climate change, communicable diseases, diarrhea, infantile, influenza, human, malaria, respiratory infections


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is indisputable that climate is an important factor in many livestock diseases. Nevertheless, our knowledge of the impact of climate change on livestock infectious diseases is much less certain.Therefore, the aim of the article is to conduct a systematic review of the literature on the topic utilizing available retrospective data and information. Across a corpus of 175 formal publications,limited empirical evidence was offered to underpin many of the main arguments. The literature reviewed was highly polarized and often inconsistent regarding what the future may hold. Historical explorations were rare. However, identifying past drivers to livestock disease may not fully capture the extent that new and unknown drivers will influence future change. As such, our current predictive capacity is low. We offer a number of recommendations to strengthen this capacity in the coming years. We conclude that our current approach to research on the topic is limiting and unlikely to yield sufficient, actionable evidence to inform future praxis. Therefore, we argue for the creation of a reflexive, knowledge-based system, underpinned by a collective intelligence framework to support the drawing of inferences across the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The agricultural sector which contributes between 20-50% of gross domestic product in Africa and employs about 60% of the population is greatly affected by climate change impacts. Agricultural productivity and food prices are expected to rise due to this impact thereby worsening the food insecurity and poor nutritional health conditions in the continent. Incidentally, the capacity in the continent to adapt is very low. Addressing these challenges will therefore require a holistic and integrated adaptation framework hence this study. A total of 360 respondents selected through a multi-stage random sampling technique participated in the study that took place in Southern Nigeria from 2008-2011. Results showed that majority of respondents (84%) were aware that some climate change characteristics such as uncertainties at the onset of farming season, extreme weather events including flooding and droughts, pests, diseases, weed infestation, and land degradation have all been on the increase. The most significant effects of climate change that manifested in the area were declining soil fertility and weed infestation. Some of the adaptation strategies adopted by farmers include increased weeding, changing the timing of farm operations, and processing of crops to reduce post-harvest losses. Although majority of respondents were aware of government policies aimed at protecting the environment, most of them agreed that these policies were not being effectively implemented. A mutually inclusive framework comprising of both indigenous and modern techniques, processes, practices and technologies was then developed from the study in order to guide farmers in adapting to climate change effects/impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate is one of the main factors controlling winegrape production. Bioclimatic indices describing the suitability of a particular region for wine production are a widely used zoning tool. Seven suitable bioclimatic indices characterize regions in Europe with different viticultural suitability, and their possible geographical shifts under future climate conditions are addressed using regional climate model simulations. The indices are calculated from climatic variables (daily values of temperature and precipitation) obtained from transient ensemble simulations with the regional model COSMO-CLM. Index maps for recent decades (1960–2000) and for the 21st century (following the IPCC-SRES B1 and A1B scenarios) are compared. Results show that climate change is projected to have a significant effect on European viticultural geography. Detrimental impacts on winegrowing are predicted in southern Europe, mainly due to increased dryness and cumulative thermal effects during the growing season. These changes represent an important constraint to grapevine growth and development, making adaptation strategies crucial, such as changing varieties or introducing water supply by irrigation. Conversely, in western and central Europe, projected future changes will benefit not only wine quality, but might also demarcate new potential areas for viticulture, despite some likely threats associated with diseases. Regardless of the inherent uncertainties, this approach provides valuable information for implementing proper and diverse adaptation measures in different European regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is indisputable that climate is an important factor in many livestock diseases. Nevertheless, our knowledge of the impact of climate change on livestock infectious diseases is much less certain. Therefore, the aim of the article is to conduct a systematic review of the literature on the topic utilizing available retrospective data and information. Across a corpus of 175 formal publications, limited empirical evidence was offered to underpin many of the main arguments. The literature reviewed was highly polarized and often inconsistent regarding what the future may hold. Historical explorations were rare. However, identifying past drivers to livestock disease may not fully capture the extent that new and unknown drivers will influence future change. As such, our current predictive capacity is low. We offer a number of recommendations to strengthen this capacity in the coming years. We conclude that our current approach to research on the topic is limiting and unlikely to yield sufficient, actionable evidence to inform future praxis. Therefore, we argue for the creation of a reflexive, knowledge-based system, underpinned by a collective intelligence framework to support the drawing of inferences across the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conceptualizing climate as a distinct variable limits our understanding of the synergies and interactions between climate change and the range of abiotic and biotic factors, which influence animal health. Frameworks such as eco-epidemiology and the epi-systems approach, while more holistic, view climate and climate change as one of many discreet drivers of disease. Here, I argue for a new paradigmatic framework: climate-change syndemics. Climate-change syndemics begins from the assumption that climate change is one of many potential influences on infectious disease processes, but crucially is unlikely to act independently or in isolation; and as such, it is the inter-relationship between factors that take primacy in explorations of infectious disease and climate change. Equally importantly, as climate change will impact a wide range of diseases, the frame of analysis is at the collective rather than individual level (for both human and animal infectious disease) across populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present, there is a clarion call for action on climate change across the global health landscape. At the recent WHO-sponsored conference on health and climate (held in Geneva, Switzerland, on Aug 27–29, 2014) and the UN Climate Summit (New York, USA, on Sept 23, 2014), participants were encouraged to act decisively to change the current trajectory of climate disruption. Health inequalities, including those related to infectious diseases, have now been pushed to centre stage. This approach represents a step-change in thinking. But as we are urged toward collective action, is it time to rethink our approach to research, especially in relation to climate change and infectious disease?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of all the debates and controversies, a global consensus has been reached that climate change is a reality and that it will impact, in diverse manifestations that may include increased global temperature, sea level rise, more frequent occurrence of extreme weather events, change in weather patterns, etc., on food production systems, global biodiversity and overall human well being. Aquaculture is no exception. The sector is characterized by the fact that the organisms cultured, the most diverse of all farming systems and in the number of taxa farmed, are all poikilotherms. It occurs in fresh, brackish and marine waters, and in all climatic regimes from temperate to tropical. Consequently, there are bound to be many direct impacts on aquatic farming systems brought about by climate change. The situation is further exacerbated by the fact that certain aquaculture systems are dependent, to varying degrees, on products such as fishmeal and fish oil, which are derived from wild-caught resources that are subjected to reduction processes. All of the above factors will impact on aquaculture in the decades to come and accordingly, the aquatic farming systems will begin to encounter new challenges to maintain sustainability and continue to contribute to the human food basket. The challenges will vary significantly between climatic regimes. In the tropics, the main challenges will be to those farming activities that occur in deltaic regions, which also happen to be hubs of aquaculture activity, such as in the Mekong and Red River deltas in Viet Nam and the Ganges-Brahamaputra Delta in Bangladesh. Aquaculture in tropical deltaic areas will be mostly impacted by sea level rise, and hence increased saline water intrusion and reduced water flows, among others. Elsewhere in the tropics, inland cage culture and other aquaculture activities could be impacted by extreme weather conditions, increased upwelling of deoxygenated waters in reservoirs, etc., requiring greater vigilance and monitoring, and even perhaps readiness to move operations to more conducive areas in a waterbody. Indirect impacts of climate change on tropical aquaculture could be manifold but are perhaps largely unknown. The reproductive cycles of a great majority of tropical species are dependent on monsoonal rain patterns, which are predicted to change. Consequently, irrespective of whether cultured species are artificially propagated or not, changes in reproductive cycles will impact on seed production and thereby the whole grow-out cycle and modus operandi of farm activities. Equally, such impacts will be felt on the culture of those species that are based on natural spat collection, such as that of many cultured molluscs. In the temperate region, global warming could raise temperatures to the upper tolerance limits of some cultured species, thereby making such culture systems vulnerable to high temperatures. New or hitherto non-pathogenic organisms may become virulent with increases in water temperature, confronting the sector with new, hitherto unmanifested and/or little known diseases. One of the most important indirect effects of climate change will be driven by impacts on production of those fish species that are used for reduction, and which in turn form the basis for aquaculture feeds, particularly for carnivorous species. These indirect effects are likely to have a major impact on some key aquaculture practices in all climatic regimes. Limitations of supplies of fishmeal and fish oil and resulting exorbitant price hikes of these commodities will lead to more innovative and pragmatic solutions on ingredient substitution for aquatic feeds, which perhaps will be a positive result arising from a dire need to sustain a major sector. Aquaculture has to be proactive and start addressing the need for adaptive and mitigative measures. Such measures will entail both technological and socio-economic approaches. The latter will be more applicable to small-scale farmers, who happen to be the great bulk of producers in developing countries, which in turn constitute the “backbone’ of global aquaculture. The sociological approaches will entail the challenge of addressing the potential climate change impacts on small farming communities in the most vulnerable areas, such as in deltaic regions, weighing the most feasible adaptive options and bringing about the policy changes required to implement these adaptive measures economically and effectively. Global food habits have changed over the years. We are currently in an era where food safety and quality, backed up by ecolabelling, are paramount; it was not so 20 years ago. In the foreseeable future, we will move into an era where consumer consciousness will demand that farmed foods of every form will have to include in their labeled products the green house gas (GHG) emissions per unit of produce. Clearly, aquaculture offers an opportunity to meet these aspirations. Considering that about 70 percent of all finfish and almost 100 percent of all molluscs and seaweeds are minimally GHG emitting, it is possible to drive aquaculture as the most GHG-friendly food source. The sector could conform to such demands and continue to meet the need for an increasing global food fish supply. However, to achieve this, a paradigm shift in our seafood consumption preferences will be needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim To evaluate whether observed geographical shifts in the distribution of the blue-winged macaw (Primolius maracana) are related to ongoing processes of global climate change. This species is vulnerable to extinction and has shown striking range retractions in recent decades, withdrawing broadly from southern portions of its historical distribution. Its range reduction has generally been attributed to the effects of habitat loss; however, as this species has also disappeared from large forested areas, consideration of other factors that may act in concert is merited.Location Historical distribution of the blue-winged macaw in Brazil, eastern Paraguay and northern Argentina.Methods We used a correlative approach to test a hypothesis of causation of observed shifts by reduction of habitable areas mediated by climate change. We developed models of the ecological niche requirements of the blue-winged macaw, based on point-occurrence data and climate scenarios for pre-1950 and post-1950 periods, and tested model predictivity for anticipating geographical distributions within time periods. Then we projected each model to the other time period and compared distributions predicted under both climate scenarios to assess shifts of habitable areas across decades and to evaluate an explanation for observed range retractions.Results Differences between predicted distributions of the blue-winged macaw over the twentieth century were, in general, minor and no change in suitability of landscapes was predicted across large areas of the species' original range in different time periods. No tendency towards range retraction in the south was predicted, rather conditions in the southern part of the species' range tended to show improvement for the species.Main conclusions Our test permitted elimination of climate change as a likely explanation for the observed shifts in the distribution of the blue-winged macaw, and points rather to other causal explanations (e.g. changing regional land use, emerging diseases).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential impact of global climate change on the spatial-temporal distribution of phoma leaf spot of coffee in Brazil was evaluated. Maps were prepared with the favorability of the climate to the occurrence of the disease in the current period and future. The future scenarios used were centered for the decades of 2010-2030, 2040-2060, and 2070-2090 (scenarios A2 and B2). These scenarios were obtained from six global climate models (GCM's) provided by the Intergovernmental Panel on Climate Change (IPCC). Assuming the future scenarios outlined by the IPCC, a reduction will occur in the occurrence of climatic favorability of phoma leaf spot in Brazil in both future scenarios (A2 and B2). As with the temporal distribution, the period of greatest risk of phoma leaf spot will tend to diminish in future decades. These planned changes will be larger in the A2 scenario compared to the predicted scenario B2. Despite the decrease in the favorability of phoma leaf spot in the country, some regions still present a potential risk of this disease. Furthermore, the increased frequency of extreme weather was not taken in to account. These will certainly influence the magnitude of potential impacts of climate change on the phoma leaf spot in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change affects the fundamental bases of good human health, which are clean air, safe drinking water, sufficient food, and secure shelter. Climate change is known to impact health through three climate dimensions: extreme heat, natural disasters, and infections and diseases. The temporal and spatial climatic changes that will affect the biology and ecology of vectors and intermediate hosts are likely to increase the risks of disease transmission. The greatest effect of climate change on disease transmission is likely to be observed at the extremes of the range of temperatures at which transmission typically occurs. Caribbean countries are marked by unique geographical and geological features. When combined with their physical, infrastructural development, these features make them relatively more prone to negative impacts from changes in climatic conditions. The increased variability of climate associated with slow-moving tropical depressions has implications for water quality through flooding as well as hurricanes. Caribbean countries often have problems with water and sanitation. These problems are exacerbated whenever there is excess rainfall, or no rainfall. The current report aims to prepare the Caribbean to respond better to the anticipated impact of climate change on the health sector, while fostering a subregional Caribbean approach to reducing carbon emissions by 2050. It provides a major advance on the analytical and contextual issues surrounding the impact of climate change on health in the Caribbean by focusing on the vector-borne and waterborne diseases that are anticipated to be impacted directly by climate change. The ultimate goal is to quantify both the direct and indirect costs associated with each disease, and to present adaptation strategies that can address these health concerns effectively to benefit the populations of the Caribbean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report analyses the agriculture, energy, and health sectors in Trinidad and Tobago to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Trinidad and Tobago. It also has the potential to provide essential input for identifying and preparing policies and strategies to help advance the Caribbean subregion closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated impacts of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An exploration of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The study of the impact of climate change on the agriculture sector focused on root crops, green vegetables and fisheries. For these sectors combined, the cumulative loss under the A2 scenario is calculated as approximately B$2.24 and approximately B$1.72 under the B2 scenario by 2050. This is equivalent to 1.37% and 1.05% of the 2008 GDP under the A2 and B2 scenarios, respectively. Given the potential for significant damage to the agriculture sector a large number of potential adaptation measures were considered. Out of these a short-list of 10 potential options were selected by applying 10 evaluation criteria. All of the adaptation strategies showed positive benefits. The analysis indicate that the options with the highest net benefits are: (1) Building on-farm water storage, (2) Mainstreaming climate change issues into agricultural management and (3) Using drip irrigation. Other attractive options include water harvesting. The policy decisions by governments should include these assessments, the omitted intangible benefits, as well as the provision of other social goals such as employment. The analysis of the energy sector has shown that the economic impact of climate change during 2011-2050 is similar under the A2 (US$142.88 million) and B2 (US$134.83 million) scenarios with A2 scenario having a slightly higher cost (0.737% of 2009 GDP) than the B2 scenario (0.695% of 2009 GDP) for the period. On the supply side, analyses indicate that Trinidad and Tobago’s energy sector will be susceptible to the climate change policies of major energy-importing countries (the United States of America and China), and especially to their renewable energy strategies. Implementation of foreign oil substitution policy by the United States of America will result in a decline in Trinidad and Tobago’s Liquefied Natural Gas (LNG) export (equivalent to 2.2% reduction in 2009 GDP) unless an alternative market is secured for the lost United States of America market. China, with its rapid economic growth and the highest population in the world, offers a potential replacement market for Trinidad and Tobago’s LNG export. In this context the A2 scenario will offer the best option for Trinidad and Tobago’s energy sector. The cost-benefit analysis undertaken on selected adaptation strategies reveal that the benefit-cost ratio of replacing electric water heaters with solar water heaters is the most cost-effective. It was also found that the introduction of Compact Fluorescent Light (CFL) and Variable Refrigerant Volume (VRV) air conditioners surpasses the projected cost of increased electricity consumption due to climate change, and provides an economic rationale for the adoption of these adaptation options even in a situation of increased electricity consumption occasioned by climate change. Finally, the conversion of motor fleets to Compressed Natural Gas (CNG) is a cost-effective adaptation option for the transport sector, although it has a high initial cost of implementation and the highest per capita among the four adaptation options evaluated. To investigate the effect of climate change on the health sector dengue fever, leptospirosis, food borne illnesses, and gastroenteritis were examined. The total number of new dengue cases for the period 2008 to 2050 was 204,786 for BAU, 153,725 for A2 and 131,890 for the B2 scenario. With regard to the results for leptospirosis, A2 and B2 seem to be following a similar path with total number of new cases in the A2 scenario being 9,727 and 9,218 cases under the B2 scenario. Although incidence levels in the BAU scenario coincided with those of A2 and B2 prior to 2020, they are somewhat lower post 2020. A similar picture emerges for the scenarios as they relate to food-borne illnesses and to gastroenteritis. Specifically for food-borne illnesses, the BAU scenario recorded 27,537 cases, the A2 recorded 28,568 cases and the B2 recorded 28,679 cases. The focus on the selected sources of morbidity in the health sector has highlighted the fact that the vulnerability of the country’s health sector to climate change does not depend solely on exogenously derived impacts, but also on the behaviour and practices among the population. It is clear that the vulnerability which became evident in the analysis of the impacts on dengue fever, leptospirosis and food-borne illnesses is not restricted solely to climate or other external factors. The most important adaptation strategy being recommended targets lifestyle, behaviour and attitude changes. The population needs to be encouraged to alter their behaviours and practices so as to minimise their exposure to harmful outcomes as it relates to the incidence of these diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report analyses the agriculture, health and tourism sectors in Saint Lucia to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change in Saint Lucia. It also has the potential to provide essential input for identifying and preparing policies and strategies to help advance the Caribbean subregion closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated impacts of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An evaluation of various adaptation strategies for each sector was also undertaken using standard evaluation techniques. The key subsectors in agriculture are expected to have mixed impacts under the A2 and B2 scenarios. Banana, fisheries and root crop outputs are expected to fall with climate change, but tree crop and vegetable production are expected to rise. In aggregate, in every decade up to 2050, these sub-sectors combined are expected to experience a gain under climate change with the highest gains under A2. By 2050, the cumulative gain under A2 is calculated as approximately US$389.35 million and approximately US$310.58 million under B2, which represents 17.93% and 14.30% of the 2008 GDP respectively. This result was unexpected and may well be attributed to the unavailability of annual data that would have informed a more robust assessment. Additionally, costs to the agriculture sector due to tropical cyclones were estimated to be $6.9 million and $6.2 million under the A2 and B2 scenarios, respectively. There are a number of possible adaptation strategies that can be employed by the agriculture sector. The most attractive adaptation options, based on the benefit-cost ratio are: (1) Designing and implementation of holistic water management plans (2) Establishment of systems of food storage and (3) Establishment of early warning systems. Government policy should focus on the development of these adaption options where they are not currently being pursued and strengthen those that have already been initiated, such as the mainstreaming of climate change issues in agricultural policy. The analysis of the health sector placed focus on gastroenteritis, schistosomiasis, ciguatera poisoning, meningococal meningitis, cardiovascular diseases, respiratory diseases and malnutrition. The results obtained for the A2 and B2 scenarios demonstrate the potential for climate change to add a substantial burden to the health system in the future, a factor that will further compound the country’s vulnerability to other anticipated impacts of climate change. Specifically, it was determined that the overall Value of Statistical Lives impacts were higher under the A2 scenario than the B2 scenario. A number of adaptation cost assumptions were employed to determine the damage cost estimates using benefit-cost analysis. The benefit-cost analysis suggests that expenditure on monitoring and information provision would be a highly efficient step in managing climate change and subsequent increases in disease incidence. Various locations in the world have developed forecasting systems for dengue fever and other vector-borne diseases that could be mirrored and implemented. Combining such macro-level policies with inexpensive micro-level behavioural changes may have the potential for pre-empting the re-establishment of dengue fever and other vector-borne epidemic cycles in Saint Lucia. Although temperature has the probability of generating significant excess mortality for cardiovascular and respiratory diseases, the power of temperature to increase mortality largely depends on the education of the population about the harmful effects of increasing temperatures and on the existing incidence of these two diseases. For these diseases it is also suggested that a mix of macro-level efforts and micro-level behavioural changes can be employed to relieve at least part of the threat that climate change poses to human health. The same principle applies for water and food-borne diseases, with the improvement of sanitation infrastructure complementing the strengthening of individual hygiene habits. The results regarding the tourism sector imply that the tourism climatic index was likely to experience a significant downward shift in Saint Lucia under the A2 as well as the B2 scenario, indicative of deterioration in the suitability of the island for tourism. It is estimated that this shift in tourism features could cost Saint Lucia about 5 times the 2009 GDP over a 40-year horizon. In addition to changes in climatic suitability for tourism, climate change is also likely to have important supply-side effects on species, ecosystems and landscapes. Two broad areas are: (1) coral reefs, due to their intimate link to tourism, and, (2) land loss, as most hotels tend to lie along the coastline. The damage related to coral reefs was estimated at US$3.4 billion (3.6 times GDP in 2009) under the A2 scenario and US$1.7 billion (1.6 times GDP in 2009) under the B2 scenario. The damage due to land loss arising from sea level rise was estimated at US$3.5 billion (3.7 times GDP) under the A2 scenario and US$3.2 billion (3.4 times GDP) under the B2 scenario. Given the potential for significant damage to the industry a large number of potential adaptation measures were considered. Out of these a short-list of 9 potential options were selected by applying 10 evaluation criteria. Using benefit-cost analyses 3 options with positive ratios were put forward: (1) increased recommended design speeds for new tourism-related structures; (2) enhanced reef monitoring systems to provide early warning alerts of bleaching events, and, (3) deployment of artificial reefs or other fish-aggregating devices. While these options had positive benefit-cost ratios, other options were also recommended based on their non-tangible benefits. These include the employment of an irrigation network that allows for the recycling of waste water, development of national evacuation and rescue plans, providing retraining for displaced tourism workers and the revision of policies related to financing national tourism offices to accommodate the new climate realities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change has the potential to impact on global, regional, and national disease burdens both directly and indirectly. Projecting and valuing these health impacts is important not only in terms of assessing the overall impact of climate change on various parts of the world, but also in terms of ensuring that national and regional decision-making institutions have access to the data necessary to guide investment decisions and future policy design. This report contributes to the research focusing on projecting and valuing the impacts of climate change in the Caribbean by projecting the climate change-induced excess disease burden for two climate change scenarios in Montserrat for the period 2010 - 2050, and by estimating the monetary value associated with this excess disease burden. The diseases initially considered in this report are variety of vector and water-borne impacts and other miscellaneous conditions; specifically, malaria, dengue fever, gastroenteritis/diarrheal disease, schistosomiasis, leptospirosis, ciguatera poisoning, meningococcal meningitis, and cardio-respiratory diseases. Disease projections were based on derived baseline incidence and mortality rates, available dose-response relationships found in the published literature, climate change scenario population projections for the A2 and B2 IPCC SRES scenario families, and annual temperature and precipitation anomalies as projected by the downscaled ECHAM4 global climate model. Monetary valuation was based on a transfer value of statistical life approach with a modification for morbidity. Using discount rates of 1%, 2% and 4%, results show mean annual costs (morbidity and mortality) ranges of $0.61 million (in the B2 scenario, discounted at 4% annually) – $1 million (in the A2 scenario, discounted at 1% annually) for Montserrat. These costs are compared to adaptation cost scenarios involving increased direct spending on per capita health care. This comparison reveals a high benefit-cost ratio suggesting that moderate costs will deliver significant benefit in terms of avoided health burdens in the period 2010-2050. The methodology and results suggest that a focus on coordinated data collection and improved monitoring represents a potentially important no regrets adaptation strategy for Montserrat. Also the report highlights the need for this to be part of a coordinated regional response that avoids duplication in spending.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change has the potential to impact on global, regional, and national disease burdens both directly and indirectly. Projecting and valuing these health impacts is important not only in terms of assessing the overall impact of climate change on various parts of the world, but also of ensuring that national and regional decision-making institutions have access to the data necessary to guide investment decisions and future policy design. This report contributes to the research focusing on projecting and valuing the impacts of climate change in the Caribbean by projecting the climate change-induced excess disease burden for two climate change scenarios in Saint Lucia for the period 2010 - 2050, and by estimating the non-market, statistical life-based costs associated with this excess disease burden. The diseases initially considered in this report are a variety of vector and water-borne impacts and other miscellaneous conditions; specifically, malaria, dengue fever, gastroenteritis/diarrhoeal disease, schistosomiasis, leptospirosis, ciguatera poisoning, meningococcal meningitis, and cardio-respiratory diseases. Disease projections were based on derived baseline incidence and mortality rates, available dose-response relationships found in the published literature, climate change scenario population projections for the A2 and B2 IPCC SRES scenario families, and annual temperature and precipitation anomalies as projected by the downscaled ECHAM4 global climate model. Monetary valuation was based on a transfer value of statistical life approach with a modification for morbidity. Using discount rates of 1, 2, and 4%, results show mean annual costs (morbidity and mortality) ranges of $80.2 million (in the B2 scenario, discounted at 4% annually) -$182.4 million (in the A2 scenario, discounted at 1% annually) for St. Lucia.1 These costs are compared to adaptation cost scenarios involving direct and indirect interventions in health care. This comparison reveals a high benefit-cost ratio suggesting that moderate costs will deliver significant benefit in terms of avoided health costs from 2010-2050. In this context indirect interventions target sectors other than healthcare (e.g. water supply). It is also important to highlight that interventions can target both the supply of health infrastructure (including health status and disease monitoring), and households. It is suggested that a focus on coordinated data collection and improved monitoring represents a potentially important no regrets adaptation strategy for St Lucia. Also, the need for this to be part of a coordinated regional response that avoids duplication in spending is highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is a naturally occurring phenomenon in which the earth‘s climate goes through cycles of warming and cooling; these changes usually take place incrementally over millennia. Over the past century, there has been an anomalous increase in global temperature, giving rise to accelerated climate change. It is widely accepted that greenhouse gas emissions from human activities such as industries have contributed significantly to the increase in global temperatures. The existence and survival of all living organisms is predicated on the ability of the environment in which they live not only to provide conditions for their basic needs but also conditions suitable for growth and reproduction. Unabated climate change threatens the existence of biophysical and ecological systems on a planetary scale. The present study aims to examine the economic impact of climate change on health in Jamaica over the period 2011-2050. To this end, three disease conditions with known climate sensitivity and importance to Jamaican public health were modelled. These were: dengue fever, leptospirosis and gastroenteritis in children under age 5. Historical prevalence data on these diseases were obtained from the Ministry of Health Jamaica, the Caribbean Epidemiology Centre, the Climate Studies Group Mona, University of the West Indies Mona campus, and the Meteorological Service of Jamaica. Data obtained spanned a twelve-year period of 1995-2007. Monthly data were obtained for dengue and gastroenteritis, while for leptospirosis, the annual number of cases for 1995-2005 was utilized. The two SRES emission scenarios chosen were A2 and B2 using the European Centre Hamburg Model (ECHAM) global climate model to predict climate variables for these scenarios. A business as usual (BAU) scenario was developed using historical disease data for the period 2000-2009 (dengue fever and gastroenteritis) and 1995-2005 (leptospirosis) as the reference decades for the respective diseases. The BAU scenario examined the occurrence of the diseases in the absence of climate change. It assumed that the disease trend would remain unchanged over the projected period and the number of cases of disease for each decade would be the same as the reference decade. The model used in the present study utilized predictive empirical statistical modelling to extrapolate the climate/disease relationship in time, to estimate the number of climate change-related cases under future climate change scenarios. The study used a Poisson regression model that considered seasonality and lag effects to determine the best-fit model in relation to the diseases under consideration. Zhang and others (2008), in their review of climate change and the transmission of vector-borne diseases, found that: ―Besides climatic variables, few of them have included other factors that can affect the transmission of vector-borne disease….‖ (Zhang 2008) Water, sanitation and health expenditure are key determinants of health. In the draft of the second communication to IPCC, Jamaica noted the vulnerability of public health to climate change, including sanitation and access to water (MSJ/UNDP, 2009). Sanitation, which in its broadest context includes the removal of waste (excreta, solid, or other hazardous waste), is a predictor of vector-borne diseases (e.g. dengue fever), diarrhoeal diseases (such as gastroenteritis) and zoonoses (such as leptospirosis). In conceptualizing the model, an attempt was made to include non-climate predictors of these climate-sensitive diseases. The importance of sanitation and water access to the control of dengue, gastroenteritis and leptospirosis were included in the Poisson regression model. The Poisson regression model obtained was then used to predict the number of disease cases into the future (2011-2050) for each emission scenario. After projecting the number of cases, the cost associated with each scenario was calculated using four cost components. 1. Treatment cost morbidity estimate. The treatment cost for the number of cases was calculated using reference values found in the literature for each condition. The figures were derived from studies of the cost of treatment and represent ambulatory and non-fatal hospitalized care for dengue fever and gastroenteritis. Due to the paucity of published literature on the health care cost associated with leptospirosis, only the cost of diagnosis and antibiotic therapy were included in the calculation. 2. Mortality estimates. Mortality estimates are recorded as case fatality rates. Where local data were available, these were utilized. Where these were unavailable, appropriate reference values from the literature were used. 3. Productivity loss. Productivity loss was calculated using a human capital approach, by multiplying the expected number of productive days lost by the caregiver and/or the infected person, by GDP per capita per day (US$ 14) at 2008 GDP using 2008 US$ exchange rates. 4. No-option cost. The no-option cost refers to adaptation strategies for the control of dengue fever which are ongoing and already a part of the core functions of the Vector Control Division of the Ministry of Health, Jamaica. An estimated US$ 2.1 million is utilized each year in conducting activities to prevent the post-hurricane spread of vector borne diseases and diarrhoea. The cost includes public education, fogging, laboratory support, larvicidal activities and surveillance. This no-option cost was converted to per capita estimates, using population estimates for Jamaica up to 2050 obtained from the Statistical Institute of Jamaica (STATIN, 2006) and the assumption of one expected major hurricane per decade. During the decade 2000-2009, Jamaica had an average inflation of 10.4% (CIA Fact book, last updated May 2011). This average decadal inflation rate was applied to the no-option cost, which was inflated by 10% for each successive decade to adjust for changes in inflation over time.