110 resultados para allelopathy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The invasive thistle Carduus nutans has been reported to be allelopathic, yet no allelochemicals have been identified from the species. In a search for allelochemicals from C. nutans and the closely related invasive species C. acanthoides, bioassay-guided fractionation of roots and leaves of each species were conducted. Only dichloromethane extracts of the roots of both species contained a phytotoxin (aplotaxene, (Z,Z,Z)-heptadeca-1,8,11,14-tetraene) with sufficient total activity to potentially act as an allelochemical. Aplotaxene made up 0.44 % of the weight of greenhouse-grown C. acanthoides roots (ca. 20 mM in the plant) and was not found in leaves of either species. It inhibited growth of lettuce 50%(I-50) in soil at a concentration of ca. 0.5 mg g(-1) of dry soil (ca. 6.5 mM in soil moisture). These values gave a total activity in soil value (molar concentration in the plant divided by the molarity required for 50 % growth inhibition in soil = 3.08) similar to those of some established allelochemicals. The aplotaxene I-50 for duckweed (Lemna paucicostata) in nutrient solution was less than 0.333 mM, and the compound caused cellular leakage of cucumber cotyledon discs in darkness and light at similar concentrations. Soil in which C. acanthoides had grown contained aplotaxene at a lower concentration than necessary for biological activity in our short-term soil bioassays, but these levels might have activity over longer periods of time and might be an underestimate of concentrations in undisturbed and/or rhizosphere soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of allelopathic activity has been aim of research that evaluates mainly species used in green fertilization. Raphanus sativus L. stands out among these species, because it shows high capacity for nutrient recycling, specially nitrogen and phosphorus, what makes it an advantageous cover plant in crop rotation systems. Considering the exposed, the present study had as objective the evaluation of the allelopathic and phytotoxic potentials of different concentrations of the R. sativus leaves ethanolic extract by mean of seeds germination analyses and development of lettuce seedlings, evaluating the phytotoxicity by determination of the mitotic index of lettuce root cells, realizing the phytochemical profile and investigating the antioxidant activity. It was possible to verify that the R. sativus extract interferes in the germination index, decreasing the germinability (5 mg. mL(-1) = 9.84%; 10 mg. mL(-1) = 11.91% and 20 mg. mL(-1)= 57.51%). In the lettuce seedlings growth, the extract of this species affected the roots and hypocotyls growth. It was possible to observe phenols and total flavonoids in the extract for the concentration of 1000 mu g. mL(-1)(161mg and 83.57 mg, respectively). It was also observed, higher antioxidant activity for the concentration of 1000 mu g. mL(-1) (89.76%). In the phytotoxicity assay was observed a dose dependent effect in the mitotic index and in the cellular events during cellular division. In this study it was possible to conclude that this species has allelochemical compounds which are able to interfere directly on the stabilization and development of other species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biociências - FCLAS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Horticultura) - FCA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The allelopathic potential of leaf extracts from the medicinal plant Myrcia guianensis (Aubl.) DC. was studied in Petri dish bioassays on sorghum and determined the seed germination, germination rate index (GRI), root growth, secondary root number, the genes involved in root development (SHR, PHB, PHV and REV) and microRNA 166 that regulates these genes. The hydroalcoholic extract was more inhibitory than methanol extract (moderate inhibition) and aqueous extract at 25 and 100% concentration were least inhibitory. Application of higher dose of hydroalcoholic M. guianenesis leaf extracts on sorghum seeds, inhibited the root development and changed the expression of SHR and PHB genes and microRNA 166. This suggested that the expression of these genes could be indicator of allelopathic potential for inhibition of root development in sorghum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the phytotoxicity of Solanum aculeatissimum Jacq. leaves ethanolic extract in seeds germination, development and fixation of Lactuca sativa seedlings. The same study also aimed to assess the mitotic index of lettuce roots meristematic cells, quantification of phenols and total flavonoids and triage by mean of phytochemical testing of the main secondary metabolites classes. Bioassays of germination, development of root and hypocotyl were carried out in Petri dishes using achenes of Lactuca sativa L. cv. 'Grand Rapids' (lettuce). Concomitantly, were evaluated the physico-chemical characteristics (pH, osmotic potential and electrical conductivity), mitotic index, quantification of total phenols and flavonoids and determination of phytochemical profile of the treatments extract. The results obtained in the bioassays demonstrate that the ethanol extract of S. aculeatissimuma presents phytotoxic potential in the development of lettuce seedlings, given that the concentration of 20 mg/ml showed greater inhibition (41% of germination). The extract contains significant amounts of antioxidants, total flavonoid and phenols, where the concentration 1000µg/mL showed higher values (86.50%). Furthermore, it was possible to observe the presence of compounds with allelopathic activity in the phytochemical screening test as coumarins, tannins, terpenes, flavonoids and alkaloids. Given the above it is clear that the ethanolic extract of S. aculeatissimum presents allelopathic substances with phytotoxic activity that can affect the germination and development of other plant species in their natural environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sowing crops following cover crops on forage may cause injuries and productivity reduction, due reasons as allelopathy or glyphosate residues. The objective of this study was to evaluate the influence of differing periods between cover crop (Urochloa ruziziensis) desiccation with glyphosate and sunflower (Aguara 4) sowing in a no-tillage system on crop development and productivity. Two assays were performed in two seasons, one in pots and the other in a field. Treatments in field assay consisted on 5 desiccation times of U. ruziziensis (with an application of glyphosate at 1.08 kg ae ha(-1)) preceding the sowing of no-till sunflower (0, 3, 7, 10 and 30 days). At the pot assays, 6 times were studied: 0, 3, 7, 10, 15 and 20 days between cover crop desiccation and sunflower sowing. A control without cover crop was also included in this assay. Biometric evaluations were performed at the vegetative stage and at harvest. As the period between U. ruziziensis desiccation and sunflower sowing was shortened, achene production in sunflower was exponentially reduced. Glyphosate application at 3 or 0 days pre sowing diminished sunflower development and achene production by approximately 30% compared to desiccation periods greater than 7 days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aimed to evaluate the influence of different concentrations of Zantedeschia aethiopica Spreng. extract on the physiological performance of the seed and on the response of the antioxidant metabolism of lettuce seedlings. The treatments consisted of leaves extracts from Z. aethiopica at concentrations of 0, 6, 12, 25 and 50%. Germination, first germination count, germination speed and index, length of shoot and radicle, seedling total dry mass, chlorophyll content, activity of superoxide dismutase, catalase and ascorbarte peroxidase enzymes, lipid peroxidation, hydrogen peroxide quantification and seedling emergence, length of organs, and total dry mass of seedlings were evaluated. The percentage of germination, the length of the shoot and radicle of seedlings and the total dry mass of seedlings grown in the greenhouse were reduced as the concentration of the extract increased. There were increases of electrical conductivity, of superoxide dismutase, catalase and ascorbate peroxidadase enzymes and the amount of hydrogen peroxide and lipid peroxidation in seedlings with increasing extract concentration. The extract reduced the physiological quality of lettuce seeds and induced an increased production of hydrogen peroxide in seedlings, which increased the activity of antioxidant enzymes that were not effective in tissue detoxification, resulting in cellular damage and increased numbers of abnormal seedlings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of some invasive plant species to produce biochemical compounds toxic to native species, called allelopathy, is thought to be one of the reasons for their success when introduced to a novel range, an idea known as the Novel Weapons Hypothesis. However, support for this hypothesis mainly comes from bioassays and experiments conducted under controlled environments, whereas field evidence is rare. In a field experiment, we investigated whether three plant species invasive in Europe, Solidago gigantea, Impatiens glandulifera and Erigeron annuus, inhibit the germination of native species through allelopathy more than an adjacent native plant community. At three sites for each invasive species, we compared the germination of native species that were sown on invaded and non-invaded plots. Half of these plots were amended with activated carbon to reduce the influence of potential allelopathic compounds. The germination of sown seeds and of seeds from the seedbank was monitored over a period of 9 weeks. Activated carbon generally enhanced seed germination. This effect was equally pronounced in invaded and adjacent non-invaded plots, indicating that invasive species do not suppress germination more than a native plant community. In addition, more seeds germinated from the seedbank on invaded than on non-invaded soil, probably due to previous suppression of germination by the invasive species. Our field study does not provide evidence for the Novel Weapons Hypothesis with respect to the germination success of natives. Instead, our results suggest that if invasive species release allelopathic compounds that suppress germination, they do so to a similar degree as the native plant community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecological interactions between different species are not fixed, but they may depend, at least to some extent, on the particular genotypes involved as well as on the environmental conditions experienced by previous generations. We used a set of natural genotypes of Arabidopsis thaliana, that previously experienced contrasting nutrient and herbivory conditions, to test for the influences of genetic variation and maternal effects on competitive interactions between Arabidopsis and the weedy annuals Anagallis arvensis and Senecio vulgaris. We used activated carbon to discriminate between resource competition and allelopathy components of plant-plant interactions. There was a clear competitive hierarchy: Senecio > Arabidopsis > Anagallis. Although we found no evidence for allelopathic potential of Arabidopsis, our results indicate that both Anagallis and Senecio exerted negative (direct or indirect) allelopathic effects on Arabidopsis. There were significant differences among Arabidopsis genotypes in their competitive effects on both neighbor species, as well as in their response to competition. Maternal environments significantly influenced not only the growth and fitness of Arabidopsis itself, but also its competitive effect on Anagallis. We found, however, no evidence that maternal environments affected the competitive effect on Senecio or overall competitive response of Arabidopsis. Generally, resource competition played a greater role than allelopathy, and genotype effects were more important than maternal effects. Our study demonstrates that ecological interactions, such as plant competition, are complex and multi-layered, and that, in particular, the influence of genetic variation on interactions with other species should not be overlooked.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract A major task in ecology is to establish the degree of generality of ecological mechanisms. Here we present results from a multi-species experiment that tested whether a set of invasive species altered the soil conditions to the detriment of other species by releasing allelopathic compounds or inducing shifts in soil biota composition, and whether this effect was more pronounced relative to a set of closely related native species. We pre-cultivated soil with 23 exotic invasive, 19 related native and 6 related exotic garden species and used plain soil as a control. To separate allelopathy from effects on the soil biota, we sterilized half of the soil. Then, we compared the effect of soil pre-cultivation and sterilization on germination and growth of four native test species in two experiments. The general effect of soil sterilization was positive. The effect of soil pre-cultivation on test species performance was neutral to positive, and sterilization reduced this positive effect. This indicates general absence of allelopathic compounds and a shift toward a less antagonistic soil biota by cultivation species. In both experiments, pre-cultivation effects did not differ systematically between exotic invasive, exotic garden or native species. Our results do not support the hypothesis that invasive plants generally inhibit the growth of others by releasing allelopathic compounds or accumulating a detrimental soil biota.