957 resultados para alkaline phosphatase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endochondral calcification involves the participation of matrix vesicles (MVs), but it remains unclear whether calcification ectopically induced by implants of demineralized bone matrix also proceeds via MVs. Ectopic bone formation was induced by implanting rat demineralized diaphyseal bone matrix into the dorsal subcutaneous tissue of Wistar rats and was examined histologically and biochemically. Budding of MVs from chondrocytes was observed to serve as nucleation sites for mineralization during induced ectopic osteogenesis, presenting a diameter with Gaussian distribution with a median of 306 ± 103 nm. While the role of tissue-nonspecific alkaline phosphatase (TNAP) during mineralization involves hydrolysis of inorganic pyrophosphate (PPi), it is unclear how the microenvironment of MV may affect the ability of TNAP to hydrolyze the variety of substrates present at sites of mineralization. We show that the implants contain high levels of TNAP capable of hydrolyzing p-nitrophenylphosphate (pNPP), ATP and PPi. The catalytic properties of glycosyl phosphatidylinositol-anchored, polidocanol-solubilized and phosphatidylinositol-specific phospholipase C-released TNAP were compared using pNPP, ATP and PPi as substrates. While the enzymatic efficiency (k cat/Km) remained comparable between polidocanol-solubilized and membrane-bound TNAP for all three substrates, the k cat/Km for the phosphatidylinositol-specific phospholipase C-solubilized enzyme increased approximately 108-, 56-, and 556-fold for pNPP, ATP and PPi, respectively, compared to the membrane-bound enzyme. Our data are consistent with the involvement of MVs during ectopic calcification and also suggest that the location of TNAP on the membrane of MVs may play a role in determining substrate selectivity in this micro-compartment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of leukocyte alkaline phosphatasd (LAP) is used as an aid to diagnose many diseases in the laboratory. For example, it can be used to distinguish chronic myeloid leukemia (CML) from other myeloproliferative disorders (particularly myelofibrosis and polycythemia) and leukemoid reactions (LR). Traditionally, this test is performed with the use of subjective cytochemical assays that assign a score to the level of LAP. Here we present a nonsubjective, quantitative, sensitive, and inexpensive chemiluminescent technique that determines LAP based on the commercial reagent Immulite (R) (AMPPD). To validate this methodology, intact leukocytes obtained from 32 healthy subjects, nine CML patients, and nine LR patients were submitted to the optimized protocol. By measuring the light emission elicited by four concentrations of neutrophils, we were able to estimate the activity of LAP per cell (the slope of the curve obtained by linear regression). A high linear correlation was found between the chemiluminescent result (slope) and the cytochemical score. The slope for healthy individuals ranged between 0.61 and 8.49 (10(-5) mV.s/cell), with a median of 2.04 (10(-5) mV.s/cell). These results were statistically different from those of CML patients (range = 0.07-1.75, median = 0.79) and LR patients (range = 3.84-47.24, median 9.58; P < 0.05).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polidocanol-solubilized osseous plate alkaline phosphatase was modulated by cobalt ions in a similar way as by magnesium ions. For concentrations up to 1 mu M, the Chelex-treated enzyme was stimulated by cobalt ions, showing K-d = 6.0 mu M, V = 977.5 U/mg, and site-site interactions (n = 2.5). Cobalt-enzyme was highly unstable at 37 degrees C, following a biphasic inactivation process with inactivation constants of about 0.0625 and 0.0015 min(-1). Cobalt ions stimulated the enzyme synergistically in the presence of magnesium ions (K-d = 5.0 mu M; V = 883.0 U/mg) or in the presence of zinc ions (K-d = 75.0 mu M; V = 1102 U/mg). A steady-state kinetic model for the modulation of enzyme activity by cobalt ions is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetic evidence for the role of divalent metal ions in the phosphotransferase activity of polidocanol-solubilized alkaline phosphatase from osseous plate is reported. Ethylenediamine tetreacetate, 1,10-phenanthrolin, and Chelex-100 were used to prepare metal-depleted alkaline phosphatase. Except for Chelex-100, either irreversible inactivation of the enzyme or incomplete removal of metal ions occurred. After Chelex-100 treatment, full hydrolase activity of alkaline phosphatase was recovered upon addition of metal ions. on the other hand, only 20% of transferase activity was restored with 0.1 mu M ZnCl2, in the presence of 1.0 M diethanolamine as phosphate acceptor. In the presence of 0.1 mM MgCl2, the recovery of transferase activity increased to 63%. Independently of the phosphate acceptor used, the transferase activity of the metal-depleted alkaline phosphatase was fully restored by 8 mu M ZnCl2 plus 5 mM MgCl2. In the presence of diethanolamine as phosphate acceptor, manganese, cobalt, and calcium ions did nor stimulate the transferase activity. However, manganese and cobalt-enzyme catalyzed the transfer of phosphate to glycerol and glucose. (C) 1997 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkaline phosphatase from rat osseous plate is allosterically modulated by ATP, calcium and magnesium at pH 7.5. At pH 9.4, the hydrolysis of ATP and PNPP follows Michaelis-Menten kinetics with K0.5 values of 154 muM and 42 muM, respectively. However, at pH 7.5 both substrates exhibit more complex saturation curves, while only ATP exhibited site-site interactions. Ca2+-ATP and Mg2+-ATP were effective substrates for the enzyme, while the specific activity of the enzyme for the hydrolysis of ATP at pH 7.5 was 800-900 U/mg and was independent of the ion species. ATP, but not PNPP, was hydrolyzed slowly in the absence of metal ions with a specific activity of 140 U/mg. These data demonstrate that in vitro and at pH 7.5 rat osseous plate alkaline phosphatase is an active calcium or magnesium-activated ATPase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The mycelial Pi-repressible acid phosphatase presented p-nitrophenylphosphatase activity with negative cooperativity and Michaelian behavior when synthesized by the wild-type and pho-2A mutant strains of Neurospora crassa, respectively.2. The major acid phosphatase present in cell extracts of the pho-2A mutant of N. crassa grown in low Pi medium is more thermolabile (t1/2 = 4 min at 54-degrees-C, pH 5.4) than that of the wild strain (stable for at least 80 min at 54-degrees-C, pH 5.4).3. The pho-2A mutant of N. crassa secreted a more thermolabile acid phosphatase (t1/2 = 30 min at 50-degrees-C, pH 5.4) than the wild strain (t1/2 of at least 80 min at 50-degrees-C, pH 5.4).4. The pho-2A mutant of N. crassa synthesized a more thermolabile acid phosphatase (t1/2 = 37 min at 54-degrees-C, pH 5.4) than the wild strain in high Pi medium (t1/2 = 14 min al 54-degrees-C, pH 5.4).5. The pleiotropic nature of the pho-2 locus and its possible involvement in the mechanism of phosphatase secretion by N. crassa are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The D allozyme of placental alkaline phosphatase (PLAP) displays enzymatic properties at variance with those of the common PLAP allozymes. We have deduced the amino acid sequence of the PLAP D allele by PCR cloning of its gene, ALPP Two coding substitutions were found in comparison With the cDNA of the common PLAP F allele, i.e., 692C>G and 1352A>G, which translate into a P209R and E429G substitution. A single nucleotide primer extension (SNuPE) assay was developed using PCR primers that enable the amplification of a 1.9 kb PLAP fragment. Extension primers were then used on this PCR fragment to detect the 692C>G and 1352A>G substitution. The SNuPE assay on these two nucleotide substitutions enabled us to distinguish the PLAP F and D alleles from the PLAP S/I alleles. Functional studies on the D allozyme were made possible by constructing and expressing a PLAP D cDNA, i.e., [Arg209, Gly429] PLAP, into wildtype Chinese hamster ovary cells. We determined the k(cat) and K-m, of the PLAP S, F. and D allozymes using the non,physiological substrate p-nitrophenylphosphate at an optimal pH (9.8) as well as two physiological substrates, i.e., pyridoxal-5'-phosphate and inorganic pyrophosphate at physiological pH (7.5). We found that the biochemical properties of the D allozyme of PLAP are significantly different from those of the common PLAP allozymes. These biochemical findings suggest that a suboptimal enzymatic function by the PLAP D allozyme may be the basis for the apparent negative selective pressure of the PLAP D allele. The development of the SNuPE assay will enable us to test the hypothesis that the PLAP D allele is subjected to intrauterine selection by examining genomic DNA from statistically informative population samples. Hum Mutat 19:258-267, 2002. (C) 2002 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rat osseous plate alkaline phosphatase is a metalloenzyme with two binding sites for Zn2+ (sites I and III) and one for Mg2+ (site II). This enzyme is stimulated synergistically by Zn2+ and Mg2+ (Ciancaglini et al., 1992) and also by Mn2+ (Leone et al., 1995) and Co2+ (Ciancaglini et al., 1995). This study was aimed to investigate the modulation of enzyme activity by Ca2+. In the absence of Zn2+ and Mg2+, Ca2+ had no effects on the activity of Chelex-treated, Polidocanol-solubilized enzyme. However, in the presence of 10 mu M MgCl2, increasing concentration of Ca2+ were inhibitory, suggesting the displacement of Mg2+ from the magnesium-reconstituted enzyme. For calcium-reconstituted enzyme, Zn2+ concentrations Zip to 0.1 mu M were stimulatory, increasing specific activity from 130 U/mg to about 240 U/mg with a K-0.5 = 8.5 nM. Above 0.1 mu M Zn2+ exerted a strong inhibitory effect and concentrations of Ca2+ up to I mM were not enough to counteract this inhibition, indicating that Ca2+ was easily displaced by Zn2+. At fixed concentrations of Ca2+, increasing concentrations of Mg2+ increased the enzyme specific activity from 472 U/mg to about 547 U/mg, but K-0.5 values were significantly affected (from 4.4 mu M to 38.0 mu M). The synergistic effects observed for the activity of Ca2+ plus magnesium-reconstituted enzyme, suggested that these two ions bind to the different sites. A model to explain the effect of Ca2+ on the activity of the enzyme is presented. (C) 1997 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkaline phosphatase activity was released up to 100% from the membrane by using 0.1 U of phosphatidylinositol-specific phospholipase C from B. thuringiensis. The Mr of solubilized enzyme was 145,000 by Sephacryl S-300 gel filtration and 66,000 by SDS-PAGE, suggesting a dimeric structure. Solubilization of the membrane-bound enzyme with phospholipase C did not destroy its ability to hydrolyze p-nitrophenyl phosphate (PNPP) (264.3 mu mol min(-1) mg(-1)), ATP (42.0 mu mol min(-1) mg(-1)) and pyrophosphate (28.4 mu mol min(-1) mg(-1)). The hydrolysis of ATP and PNPP by solubilized enzyme exhibited ''Michaelian'' kinetics with K-0.5 = 70 and 979 mu M, respectively. For pyrophosphate, K-0.5 was 128 mu M and site-site interactions were observed (n = 1.4). Magnesium ions were stimulatory (K-d = 1.5 mM) but zinc ions were powerful non-competitive inhibitors (K-d = 6.2 mu M) of solubilized enzyme. Treatment of solubilized alkaline phosphatase with Chellex 100 reduced the original PNPPase activity to 5%. Cobalt (K-0.5 = 10.1 mu M), magnesium (K-0.5 = 29.5 mu M) and manganese ions (K-0.5 = 5 mu M) restored the activity of the apoenzyme with positive cooperativity, suggesting that phosphatidylinositol-specific phospholipase C-solubilized alkaline phosphatase is a metalloenzyme. The stimulation of the apoenzyme by calcium ions (K-0.5 = 653 mu M) was lower than that observed for the other ions (26%) and exhibited site-site interactions (n = 0.7). Zinc ions had no effect on the apoenzyme of the solubilized enzyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Increased levels of bone alkaline phosphatase activity were observed in diabetic rats. These animals exhibited impaired bone development without concomitant alterations of the sequence of cellular transformations.2. Alkaline phosphatase activity was delayed in diabetic rats but the kinetic parameters for the hydrolysis of p-Nitrophenylphosphate (PNPP) were virtually the same observed for controls (N = 1.2 and K0.5 = 43 muM).3. Alkaline phosphatase from diabetic rats had a better affinity (K0.5 = 38 muM) for magnesium ions than controls (K0.5 = 9 1 muM).4. Zinc ions affected alkaline phosphatase activity from control and diabetic rats in the same way (K0.5 = 10 muM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. 1. Solubilized and membrane-bound alkaline phosphatase showed Michaelis-Menten behavior in a wide range of different substrate concentrations. 2. 2. Membrane-bound alkaline phosphatase has a molecular weight of 130,000 and its minimum active configuration comprises two identical subunits of about 65,000. 3. 3. The two forms of the enzyme behave similarly with respect to NaCl, urea and guanidine HCl. 4. 4. Catalytic groups have pK values of about 8.5 and 9.7 for both membrane-bound and solubilized enzyme. © 1987.