946 resultados para acute inflammatory response


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Resistance exercise is emerging as a potential adjunct therapy to aid in the management of breast cancer-related lymphedema (BCRL). However, the mechanisms underlying the relationships between the acute and long-term benefits of resistance exercise on BCRL are not well understood. Purpose. To examine the acute inflammatory response to upper-body resistance exercise in women with BCRL and to compare these effects between resistance exercises involving low-, moderate- and high-loads. The impact on lymphoedema status and associated symptoms was also compared. Methods Twenty-one women aged 62 ± 10 years with mild to severe BCRL participated in the study. Participants completed a low-load (15-20 repetition maximum), moderate-load (10-12 repetition maximum) and high-load (6-8 repetition maximum) exercise sessions consisting of three sets of six upper-body resistance exercises. Sessions were completed in a randomized order separated by a seven to 10 day wash-out period. Venous blood samples were obtained to assess markers of exercise-induced muscle damage and inflammation (creatine kinase [CK], C-reactive protein [CRP], interleukin-6 [IL-6] and tumour necrosis factor-alpha [TNF-α]). Lymphoedema status was assessed using bioimpedance spectroscopy and arm circumferences, and associated symptoms were assessed using visual analogue scales (VAS) for pain, heaviness and tightness. Measurements were conducted before and 24 hours after the exercise sessions. Results No significant changes in CK, CRP, IL-6 and TNF-α were observed following the low-, moderate- or high-load resistance exercise sessions. There were no significant changes in arm swelling or symptom severity scores across the three resistance exercise conditions. Conclusions The magnitude of acute exercise-induced inflammation following upper-body resistance exercise in women with BCRL does not vary between resistance exercise loads. Given these observations, moderate- to high-load resistance training is recommended for this patient population as these loads prompt superior physiological and functional benefits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mice selected for a strong (AIRmax) or weak (AIRmin) acute inflammatory response present different susceptibilities to bacterial infections, autoimmune diseases and carcinogenesis. Variations in these phenotypes have been also detected in AIRmax and AIRmin mice rendered homozygous for Slc11a1 resistant (R) and susceptible (S) alleles. Our aim was to investigate if the phenotypic differences observed in these mice was related to the complement system. AIRmax and AIRmin mice and AIRmax and AIRmin groups homozygous for the resistance (R) or susceptibility (S) alleles of the solute carrier family 11a1 member (Slc11a1) gene, formerly designated Nramp-1. While no difference in complement activity was detected in sera from AIRmax and AIRmin strains, all sera from AIRmax Slc11a1 resistant mice (AIRmax(RR)) presented no complement-dependent hemolytic activity. Furthermore, C5 was not found in their sera by immunodiffusion and, polymerase chain reaction and DNA sequencing of its gene demonstrated that AIRmax(RR) mice are homozygous for the C5 deficient (D) mutation previously described in A/J. Therefore, the C5D allele was fixed in homozygosis in AIRmax(RR) line. The AIRmax(RR) line is a new experimental mouse model in which a strong inflammatory response can be triggered in vivo in the absence of C5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strains of mice with maximal and minimal acute inflammatory responsiveness (AIRmax and AIRmin, respectively) were developed through selective breeding based on their high- or low-acute inflammatory responsiveness. Previous reports have shown that AIRmax mice are more resistant to the development of a variety of tumours than AIRmin mice, including spontaneous metastasis of murine melanoma. Natural killer activity is involved in immunosurveillance against tumour development, so we analysed the number and activity of natural killer cells (CD49b(+)), T-lymphocyte subsets and in vitro cytokine production by spleen cells of normal AIRmax and AIRmin mice. Analysis of lymphocyte subsets by flow cytometry showed that AIRmax mice had a higher relative number of CD49b(+) cells than AIRmin mice, as well as cytolytic activity against Yac.1 target cells. The number of CD3(+) CD8(+) cells was also higher in AIRmax mice. These findings were associated with the ability of spleen cells from AIRmax mice in vitro to produce higher levels of the pro-inflammatory cytokines tumour necrosis factor-alpha, interleukin-12p40 and interferon-gamma but not the anti-inflammatory interleukin-10. Taken together, our data suggest that the selective breeding to achieve the AIRmax and AIRmin strains was able to polarize the genes associated with cytotoxic activity, which can be responsible for the antitumour resistance observed in AIRmax mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracoccidioidomycosis is a systemic human mycosis caused by Paracoccidioides brasiliensis (P. brasiliensis), an imperfect dimorphic fungus whose conidia are its infective form. Mice genetically selected for maximum (AIRmax) and minimum (AIRmin) acute inflammatory response were used as experimental paracoccidioidomycosis models. The animals were intraperitoneally inoculated with P. brasiliensis (strain 18) and killed 6, 12 and 24 hours or 3, 7 and 14 days after infection. In these periods, fragments from their spleen, liver and lung were removed for evaluation of the infection level by fungal cells, assessment of macrophagic activity by peritoneal and splenic macrophages - through the determination of nitric oxide (NO) concentrations and production of pro- and anti-inflammatory cytokines of lung and spleen homogenate supernatants. In the present study, it was observed that AIRmax lineages presented greater control of the infectious process than the AIRmin ones. Regarding NO production, AIRmax animals produced more metabolites in late periods, what may help control the infectious process. Concerning cytokine production, it was observed that the production of INF-gamma, TNF-alpha, IL-1, IL-6, IL-8 and IL-12 were increased in AIRmax lineages in most analyzed organs and periods, thus contributing to the greater resistance exhibited by such lineages against infection, except for IL-4 and IL-10 that showed decreased production in AIRmax lineage, reproducing its suppressive biological effect. From these results, it was observed that the AIRmax lineage was more effective in controlling the infectious process, with an important involvement of the analyzed cytokines. These findings are probably related to the genetically selected factors involved in the acute inflammatory response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo avaliou a resposta inflamatória aguda induzida por injeções de 0,5 mL de solução salina (controle), 500 µg de carragenina e 0,5 mL de tioglicolato a 3% na bexiga natatória de juvenis do híbrido tambacu. Os peixes foram distribuídos em três tratamentos, três repetições e aclimatados durante 10 dias antes do ensaio. A caracterização das células do exsudato inflamatório foi feita após coloração com Giemsa e PAS. Peixes injetados com carragenina apresentaram maior número de células no exsudato inflamatório do que com salina e tioglicolato. A porcentagem de trombócitos no exsudato foi maior nos injetados com carragenina quando comparada com a dos injetados com tioglicolato. Por outro lado, o percentual de granulócitos foi maior em animais injetados com tioglicolato do que em animais injetados com carragenina. A carragenina provocou maior migração de macrófagos para o foco inflamatório. O método de PAS confirmou a presença de três tipos de granulócitos: célula granular eosinofílica (CGE) tipo 1 com as características da célula granulocítica especial encontrada no sangue, CGE tipo 2, menor do que esta última, e de neutrófilos. Este estudo contribui para o melhor entendimento da resposta inflamatória e dos processos infecciosos em peixes nativos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airway smooth muscle constriction induced by cholinergic agonists such as methacholine (MCh), which is typically increased in asthmatic patients, is regulated mainly by muscle muscarinic M3 receptors and negatively by vagal muscarinic M2 receptors. Here we evaluated basal (intrinsic) and allergen-induced (extrinsic) airway responses to MCh. We used two mouse lines selected to respond maximally (AIRmax) or minimally (AIRmin) to innate inflammatory stimuli. We found that in basal condition AIRmin mice responded more vigorously to MCh than AIRmax. Treatment with a specific M2 antagonist increased airway response of AIRmax but not of AIRmin mice. The expression of M2 receptors in the lung was significantly lower in AIRmin compared to AIRmax animals. AIRmax mice developed a more intense allergic inflammation than AIRmin, and both allergic mouse lines increased airway responses to MCh. However, gallamine treatment of allergic groups did not affect the responses to MCh. Our results confirm that low or dysfunctional M2 receptor activity is associated with increased airway responsiveness to MCh and that this trait was inherited during the selective breeding of AIRmin mice and was acquired by AIRmax mice during allergic lung inflammation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
Fluid administration to critically ill patients remains the subject of considerable controversy. While intravenous fluid given for resuscitation may be life-saving, a positive fluid balance over time is associated with worse outcomes in critical illness. The aim of this systematic review is to summarise the existing evidence regarding the relationship between fluid administration or balance and clinically important patient outcomes in critical illness.

Methods
We will search Medline, EMBASE, the Cochrane Central Register of Controlled Trials from 1980 to the present and key conference proceedings from 2009 to the present. We will include studies of critically ill adults and children with acute respiratory distress syndrome (ARDS), sepsis and systemic inflammatory response syndrome (SIRS). We will include randomised controlled trials comparing two or more fluid regimens of different volumes of fluid and observational studies reporting the relationship between volume of fluid administered or fluid balance and outcomes including mortality, lengths of intensive care unit and hospital stay and organ dysfunction. Two independent reviewers will assess articles for eligibility, data extraction and quality appraisal. We will conduct a narrative and/or meta-analysis as appropriate.

Discussion
While fluid management has been extensively studied and discussed in the critical care literature, no systematic review has attempted to summarise the evidence for post-resuscitation fluid strategies in critical illness. Results of the proposed systematic review will inform practice and the design of future clinical trials.

Systematic review registration
PROSPERO CRD42013005608. (http://​www.​crd.​york.​ac.​uk/​PROSPERO/​)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work explored the role of inhibition of cyclooxygenases (COXs) in modulating the inflammatory response triggered by acute kidney injury. C57Bl/6 mice were used. Animals were treated or not with indomethacin (IMT) prior to injury (days -1 and 0). Animals were subjected to 45 min of renal pedicle occlusion and sacrificed at 24 h after reperfusion. Serum creatinine and blood urea nitrogen, reactive oxygen species (ROS), kidney myeloperoxidase (MPO) activity, and prostaglandin E2 (PGE(2)) levels were analyzed. Tumor necrosis factor (TNF)-alpha, t-bet, interleukin (IL)-10, IL-1 beta, heme oxygenase (HO)-1, and prostaglandin E synthase (PGES) messenger RNA (mRNA) were studied. Cytokines were quantified in serum. IMT-treated animals presented better renal function with less acute tubular necrosis and reduced ROS and MPO production. Moreover, the treatment was associated with lower expression of TNF-alpha, PGE(2), PGES, and t-bet and upregulation of HO-1 and IL-10. This profile was mirrored in serum, where inhibition of COXs significantly decreased interferon (IFN)-gamma, TNF-alpha, and IL-12 p70 and upregulated IL-10. COXs seem to play an important role in renal ischemia and reperfusion injury, involving the secretion of pro-inflammatory cytokines, activation of neutrophils, and ROS production. Inhibition of COX pathway is intrinsically involved with cytoprotection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Hepatocyte growth factor (HGF) is overexpressed after acute kidney injury (AKI). The aim of this study was to evaluate the role of endogenous HGF in the progression of the inflammatory response in glycerol-induced AKI (Gly-AKI) in rats. Methods: Renal and systemic HGF expressions were evaluated during the development of Gly-AKI. Subsequently, the blockade of endogenous HGF was analyzed in rats treated with anti-HGF antibody concomitant to glycerol injection. Apoptosis, cell infiltration and chemokine and cytokine profiles were investigated. Results: We detected an early peak of renal and plasma HGF protein expressions 3 h after glycerol injection. The pharmacological blockade of the endogenous HGF exacerbated the renal impairment, the tubular apoptosis, the renal expression of monocyte chemoattractant protein-1 and the macrophage, CD43+, CD4+ and CD8+ T lymphocytes renal infiltration. The analysis of mRNA expressions of Th1 (t-bet, TNF-alpha, IL-1 beta) and Th2 (gata-3, IL-4, IL-10) cytokines showed a Th1-polarized response in Gly-AKI rats that was aggravated with the anti-HGF treatment. Conclusion: Endogenous HGF attenuates the renal inflammatory response, leukocyte infiltration and Th1 polarization after glycerol injection. The control of cellular immune response may partly explain the protective effect of endogenous HGF in the development of Gly-AKI. Copyright (C) 2008 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To investigate the effect of the opioid blocker naltrexone in the inflammatory response in acute pancreatitis (AP). METHODS: Acute pancreatitis was induced in anesthetized male Wistar rats by retrograde injection of 2.5% sodium taurocholate diluted in 0.5ml saline into the main pancreatic duct. Animals were randomized to the following experimental groups: Control Group (n=9): animals received an intraperitoneal injection of saline solution (0.5ml), 15 minutes before the induction of AP. Naltrexone Group (n=9): animals received an intraperitoneal injection of naltrexone 0.5ml (15 mg/kg), 15 minutes before induction of AP. Peritoneal levels of TNF-alpha and serum levels of IL-6 and amylase were determined The volume of the ascitic fluid was also evaluated. Myeloperoxidase (MPO) activities were analyzed in homogenates of pulmonary tissue. RESULTS: There were no significant differences in the ascitic fluid volume, nor in TNF-alpha and IL-6 levels in the naltrexone group compared to controls. Treatment with naltrexone did not affect the lung MPO activity compared to control group. CONCLUSIONS: The opioid receptors don't play an important role in the pathogenesis of the inflammatory response in acute pancreatitis. If opioids affect leukocytes inflammatory signaling, there are no major implications in the pathogenesis of acute pancreatitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Secretory leucocyte protease inhibitor and elafin are members of the whey acidic protein (WAP), or WAP four disulfide-core (WFDC), family of proteins and have multiple contributions to innate defence including inhibition of neutrophil serine proteases and inhibition of the inflammatory response to lipopolysaccharide (LPS). This study aimed to explore potential activities of WFDC12, a previously uncharacterised WFDC protein expressed in the lung. Methods: Recombinant expression and purification of WFDC12 were optimised in Escherichia coli. Antiprotease, antibacterial and immunomodulatory activities of recombinant WFDC12 were evaluated and levels of endogenous WFDC12 protein were characterised by immunostaining and ELISA. Results: Recombinant WFDC12 inhibited cathepsin G, but not elastase or proteinase-3 activity. Monocytic cells pretreated with recombinant WFDC12 before LPS stimulation produced significantly lower levels of the pro-inflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared with cells stimulated with LPS alone. Recombinant WFDC12 became conjugated to fibronectin in a transglutaminase-mediated reaction and retained antiprotease activity. In vivo WFDC12 expression was confirmed by immunostaining of human lung tissue sections. WFDC12 levels in human bronchoalveolar lavage fluid from healthy and lung-injured patients were quantitatively compared, showing WFDC12 to be elevated in both patients with acute respiratory distress syndrome and healthy subjects treated with LPS, relative to healthy controls. Conclusions: Together, these results suggest a role for this lesser known WFDC protein in the regulation of lung inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6h of reperfusion and peaking at 24h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.