997 resultados para Zinc Fingers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc finger domains are structures that mediate sequence recognition for a large number of DNA-binding proteins. These domains consist of sequences of amino acids containing cysteine and histidine residues tetrahedrally coordinated to a zinc ion. In this report, we present a means to selectively inhibit a zinc finger transcription factor with cobalt(III) Schiff-base complexes. 1H NMR spectroscopy confirmed that the structure of a zinc finger peptide is disrupted by axial ligation of the cobalt(III) complex to the nitrogen of the imidazole ring of a histidine residue. Fluorescence studies reveal that the zinc ion is displaced from the model zinc finger peptide in the presence of the cobalt complex. In addition, gel-shift and filter-binding assays reveal that cobalt complexes inhibit binding of a complete zinc finger protein, human transcription factor Sp1, to its consensus sequence. Finally, a DNA-coupled conjugate of the cobalt complexes selectively inhibited Sp1 in the presence of several other transcription factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key step in the regulation of networks that control gene expression is the sequence-specific binding of transcription factors to their DNA recognition sites. A more complete understanding of these DNA–protein interactions will permit a more comprehensive and quantitative mapping of the regulatory pathways within cells, as well as a deeper understanding of the potential functions of individual genes regulated by newly identified DNA-binding sites. Here we describe a DNA microarray-based method to characterize sequence-specific DNA recognition by zinc-finger proteins. A phage display library, prepared by randomizing critical amino acid residues in the second of three fingers of the mouse Zif268 domain, provided a rich source of zinc-finger proteins with variant DNA-binding specificities. Microarrays containing all possible 3-bp binding sites for the variable zinc fingers permitted the quantitation of the binding site preferences of the entire library, pools of zinc fingers corresponding to different rounds of selection from this library, as well as individual Zif268 variants that were isolated from the library by using specific DNA sequences. The results demonstrate the feasibility of using DNA microarrays for genome-wide identification of putative transcription factor-binding sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Drosophila CF2II protein, which contains zinc fingers of the Cys2His2 type and recognizes an A+T-rich sequence, behaves in cell culture as an activator of a reporter chloramphenicol acetyltransferase gene. This activity depends on C-terminal but not N-terminal zinc fingers, as does in vitro DNA binding. By site-specific mutagenesis and binding site selection, we define the critical amino acid-base interactions. Mutations of single amino acid residues at the leading edge of the recognition helix are rarely neutral: many result in a slight change in affinity for the ideal DNA target site; some cause major loss of affinity; and others change specificity for as many as two bases in the target site. Compared to zinc fingers that recognize G+C-rich DNA, CF2II fingers appear to bind to A+T-rich DNA in a generally similar manner, but with additional flexibility and amino acid-base interactions. The results illustrate how zinc fingers may be evolving to recognize an unusually diverse set of DNA sequences.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Part I : A zinc finger gene Tzf1 was cloned in the earlier work of the lab by screening a ë-DASH2 cDNA expression library with an anti-Rat SC antibody. A ë-DASH2 genomic DNA library and cosmid lawrist 4 genomic DNA library were screened with the cDNA fragment of Tzf1 to determine the genomic organization of Tzf1. Another putative zinc finger gene Tzf2 was found about 700 bp upstream of Tzf1.RACE experiment was carried out for both genes to establish the whole length cDNA. The cDNA sequences of Tzf and Tzf2 were used to search the Flybase (Version Nov, 2000). They correspond to two genes found in the Flybase, CG4413 and CG4936. The CG4413 transcript seems to be a splicing variant of Tzf transcripts. Another two zinc finger genes Tzf3 and Tzf4 were discovered in silico. They are located 300 bp away from Tzf and Tzf2, and a non-tandem cluster was formed by the four genes. All four genes encode proteins with a very similar modular structure, since they all have five C2H2 type zinc fingers at their c-terminal ends. This is the most compact zinc finger protein gene cluster found in Drosophila melanogaster.Part II: 34,056 bp insert of the cosmid 19G11

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The corpus luteum (CL) is a temporary organ involved in the maintenance of pregnancy. In the course of its life-cycle, the CL undergoes two distinct and consecutive processes for its inevitable removal through apoptosis: functional and structural luteolysis. We isolated a gene encoding for a novel rat zinc finger protein (ZFP), named rat ZFP96 (rZFP96) from an ovarian lambda cDNA library. Sequence analysis revealed close sequence and structural similarity to mouse ZFP96 and human zinc finger protein 305 (ZNF305). Quantitative reverse transcription-polymerase chain reaction analysis revealed a positive correlation with the end of pregnancy, that is, the onset of structural luteolysis of the CL. Messenger RNA levels increased 3-fold (P < 0.01) between days 13 and 22 of pregnancy and 8-fold (P < 0.01) between day 13 of pregnancy and day 1 post-partum. In addition, we detected rZFP96 expression in mammary, placenta, heart, kidney and skeletal muscle. Sequence analysis predicted that rZFP96 has a high probability of localizing to the nuclear compartment. The presence of both a perfect consensus TGEKP linker sequence between zinc fingers 2 and 3 as well as several similar sequences between the other zinc fingers suggests physical interaction with DNA. Speculatively, rZFP96 may therefore function as a transcription factor, switching-off pro-survival genes and/or upregulating pro-apoptotic genes and thereby contributing to the demise of the CL.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An important question in biology is to understand the role of specific gene products in regulating embryogenesis and cellular differentiation. Many of the regulatory proteins possess specific motifs, such as the homeodomain, basic helix-loop-helix structure, zinc finger, and leucine zipper. These sequence motifs participate in specific protein-DNA, protein-RNA, and protein-protein interactions, and are important for the function of these regulatory proteins.^ The human rfp (ret finger protein) belongs to a novel zinc finger protein family, the B box zinc finger family. Most of the B box proteins, including rfp, have a conserved tripartite motif, consisting of two novel zinc fingers (the RING finger and the B box) and a coiled-coil domain. Interestingly, a fusion protein between the tripartite motif of rfp and the tyrosine kinase domain of c-ret has transforming activity. In this study, we examined the expression of rfp during mouse development, and characterized the role of the tripartite motif in rfp function.^ We cloned the mouse rfp cDNA, which shares a 98.4% homology with the human sequence at amino acid level. Such strikingly high degree of homology indicates the high evolutionary pressure on the conservation of the sequence, suggesting that rfp may have an important function. Using the somatic cell hybrid system, we assigned the rfp gene to mouse chromosome 13 and human chromosome 6. Rfp transcripts and protein were ubiquitous in day 10.5-13.5 mouse embryos; however, they were restricted in adult mice, with the highest level of expression in the testis. Rfp expression in the testis is detected only in late pachytene spermatocytes and round spermatids. In both embryos and spermatogenic cells, rfp protein was distributed within cell nuclei in a punctate pattern, similar to the PODs (PML oncogenic domains) observed with another B box protein, PML. In cultured mammalian cells, we found that rfp was indeed co-localized to the PODs with PML. Using the yeast two-hybrid system, we showed that the rfp could specifically interact with PML, and that the interaction was dependent on the distal portion of the rfp coiled-coil domain.^ We also showed that rfp could form homodimers, and both the B box and coiled-coil domain were required for proper dimerization. It seems that the proximal portion of the coiled-coil domain provides the interacting interface, while the B box zinc finger orients the coil and maintains the correct structure of the whole molecule. Our data are consistent with the zinc-binding property and structural analysis of the B box. The RING finger seems to be involved in rfp nuclear localization through interaction with other proteins. We believe that homodimerization and interaction with PML are important for the normal interaction of rfp during development and differentiation. In addition, rfp homodimerization may also be essential for the oncogenic activation of the rfp-ret fusion protein. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have used two monovalent phage display libraries containing variants of the Zif268 DNA-binding domain to obtain families of zinc fingers that bind to alterations in the last 4 bp of the DNA sequence of the Zif268 consensus operator, GCG TGGGCG. Affinity selection was performed by altering the Zif268 operator three base pairs at a time, and simultaneously selecting for sets of 16 related DNA sequences. In this way, only four experiments were required to select for all possible 64 combinations of DNA triplet sequences. The results show that (i) for high-affinity DNA binding in the range observed for the Zif268 wild-type complex (Kd = 0.5–5 nM), finger 1 specifically requires the arginine at the carboxy terminus of its recognition helix that forms a bidentate hydrogen-bond with the guanine base (G) in the crystal structure of Zif268 complexed to its DNA operator sequence GCG TGG GCG; (ii) when the guanine base (G) is replaced by A, C, or T, a lower-affinity family (Kd ⩾ 50 nM) can be detected that shows an overall tendency to bind G-rich DNA; (iii) the residues at position 2 on the finger 2 recognition helix do not appear to interact strongly with the complementary 5′ base in the finger 1 binding site; and (iv) unexpected substitutions at the amino terminus of finger 1 can occasionally result in specificity for the 3′ base in the finger 1 binding site. A DNA recognition directory was constructed for high-affinity zinc fingers that recognize all three bases in a DNA triplet for seven sequences of the type GNN. Similar approaches may be applied to other zinc fingers to broaden the scope of the directory.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Zn(Scys)4 unit is present in numerous proteins, where it assumes structural, regulatory, or catalytic roles. The same coordination is found naturally around iron in rubredoxins, several structures of which have been refined at resolutions of, or near to, 1 A. The fold of the small protein rubredoxin around its metal ion is an excellent model for many zinc finger proteins. Zn-substituted rubredoxin and its Fe-containing counterpart were both obtained as the products of the expression in Escherichia coli of the rubredoxin-encoding gene from Clostridium pasteurianum. The structures of both proteins have been refined with an anisotropic model at atomic resolution (1.1 A, R = 8.3% for Fe-rubredoxin, and 1.2 A, R = 9.6% for Zn-rubredoxin) and are very similar. The most significant differences are increased lengths of the M-S bonds in Zn-rubredoxin (average length, 2.345 A) as compared with Fe-rubredoxin (average length, 2.262 A). An increase of the CA-CB-SG-M dihedral angles involving Cys-6 and Cys-39, the first cysteines of each of the Cys-Xaa-Xaa-Cys metal binding motifs, has been observed. Another consequence of the replacement of iron by zinc is that the region around residues 36-46 undergoes larger displacements than the remainder of the polypeptide chain. Despite these changes, the main features of the FeS4 site, namely a local 2-fold symmetry and the characteristic network of N-H...S hydrogen bonds, are conserved in the ZnS4 site. The Zn-substituted rubredoxin provides the first precise structure of a Zn(Scys)4 unit in a protein. The nearly identical fold of rubredoxin around iron or zinc suggests that at least in some of the sites where the metal has mainly a structural role-e.g., zinc fingers-the choice of the relevant metal may be directed by its cellular availability and mobilization processes rather than by its chemical nature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Wilms tumor suppressor gene WT1 is implicated in the ontogeny of genito-urinary abnormalities, including Denys-Drash syndrome and Wilms tumor of the kidney. WT1 encodes Kruppel-type zinc finger proteins that can regulate the expression of several growth-related genes, apparently by binding to specific DNA sites located within 5' untranslated leader regions as well as 5' promoter sequences. Both WT1 and a closely related early growth response factor, EGR1, can bind the same DNA sequences from the mouse gene encoding insulin-like growth factor 2 (Igf-2). We report that WT1, but not EGR1, can bind specific Igf-2 exonic RNA sequences, and that the zinc fingers are required for this interaction. WT1 zinc finger 1, which is not represented in EGR1, plays a more significant role in RNA binding than zinc finger 4, which does have a counterpart in EGR1. Furthermore, the normal subnuclear localization of WT1 proteins is shown to be RNase, but not DNase, sensitive. Therefore, WT1 might, like the Kruppel-type zinc finger protein TFIIIA, regulate gene expression by both transcriptional and posttranscriptional mechanisms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several disulfide benzamides have been shown to possess wide-spectrum antiretroviral activity in cell culture at low micromolar to submicromolar concentrations, inhibiting human immunodeficiency virus (HIV) type 1 (HIV-1) clinical and drug-resistant strains along with HIV-2 and simian immunodeficiency virus [Rice, W. G., Supko, J. G., Malspeis, L., Buckheit, R. W., Jr., Clanton, D., Bu, M., Graham, L., Schaeffer, C. A., Turpin, J. A., Domagala, J., Gogliotti, R., Bader, J. P., Halliday, S. M., Coren, L., Sowder, R. C., II, Arthur, L. O. & Henderson, L. E. (1995) Science 270, 1194-1197]. Rice and coworkers have proposed that the compounds act by "attacking" the two zinc fingers of HIV nucleocapsid protein. Shown here is evidence that low micromolar concentrations of the anti-HIV disulfide benzamides eject zinc from HIV nucleocapsid protein (NCp7) in vitro, as monitored by the zinc-specific fluorescent probe N-(6-methoxy-8-quinoyl)-p-toluenesulfonamide (TSQ). Structurally similar disulfide benzamides that do not inhibit HIV-1 in culture do not eject zinc, nor do analogs of the antiviral compounds with the disulfide replaced with a methylene sulfide. The kinetics of NCp7 zinc ejection by disulfide benzamides were found to be nonsaturable and biexponential, with the rate of ejection from the C-terminal zinc finger 7-fold faster than that from the N-terminal. The antiviral compounds were found to inhibit the zinc-dependent binding of NCp7 to HIV psi RNA, as studied by gel-shift assays, and the data correlated well with the zinc ejection data. Anti-HIV disulfide benzamides specifically eject NCp7 zinc and abolish the protein's ability to bind psi RNA in vitro, providing evidence for a possible antiretroviral mechanism of action of these compounds. Congeners of this class are under advanced preclinical evaluation as a potential chemotherapy for acquired immunodeficiency syndrome.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The glass gene is required for proper photo-receptor differentiation during development of the Drosophila eye glass codes for a DNA-binding protein containing five zinc fingers that we show is a transcriptional activator. A comparison of the sequences of the glass genes from two species of Drosophila and a detailed functional domain analysis of the Drosophila melanogaster glass gene reveal that both the DNA-binding domain and the transcriptional-activation domain are highly conserved between the two species. Analysis of the DNA-binding domain of glass indicates that the three carboxyl-terminal zinc fingers alone are necessary and sufficient for DNA binding. We also show that a deletion mutant of glass containing only the DNA-binding domain can behave in a dominant-negative manner both in vivo and in a cell culture assay that measures transcriptional activation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bacteriophage T7 DNA primase recognizes 5'-GTC-3' in single-stranded DNA. The primase contains a single Cys4 zinc-binding motif that is essential for recognition. Biochemical and mutagenic analyses suggest that the Cys4 motif contacts cytosine of 5'-GTC-3' and may also contribute to thymine recognition. Residues His33 and Asp31 are critical for these interactions. Biochemical analysis also reveals that T7 primase selectively binds CTP in the absence of DNA. We propose that bound CTP selects the remaining base G, of 5'-GTC-3', by base pairing. Our deduced mechanism for recognition of ssDNA by Cys4 motifs bears little resemblance to the recognition of trinucleotides of double-stranded DNA by Cys2His2 zinc fingers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It has been recognised for some time that a full code of amino acid-based recognition of DNA sequences would be useful. Several approaches, which utilise small DNA binding motifs called zinc fingers, are presently employed. None of the current approaches successfully combine a combinatorial approach to the elucidation of a code with a single stage high throughput screening assay. The work outlined here describes the development of a model system for the study of DNA protein interactions and the development of a high throughput assay for detection of such interactions. A zinc finger protein was designed which will bind with high affinity and specificity to a known DNA sequence. For future work it is possible to mutate the region of the zinc finger responsible for the specificity of binding, in order to observe the effect on the DNA / protein interactions. The zinc finger protein was initially synthesised as a His tagged product. It was not possible however to develop a high throughput assay using the His tagged zinc finger protein. The gene encoding the zinc finger protein was altered and the protein synthesised as a Glutathione S-Transferase (GST) fusion product. A successful assay was developed using the GST protein and Scintillation Proximity Assay technology (Amersham Pharmacia Biotech). The scintillation proximity assay is a dynamic assay that allows the DNA protein interactions to be studied in "real time". This assay not only provides a high throughput method of screening zinc finger proteins for potential ligands but also allows the effect of addition of reagents or competitor ligands to be monitored.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of a protein-mediated dual functional affinity adsorption of plasmid DNA is described in this work. The affinity ligand for the plasmid DNA comprises a fusion protein with glutathione-S-transferase (GST) as the fusion partner with a zinc finger protein. The protein ligand is first bound to the adsorbent by affinity interaction between the GST moeity and gluthathione that is covalently immobilized to the base matrix. The plasmid binding is then enabled via the zinc finger protein and a specific nucleotide sequence inserted into the DNA. At lower loadings, the binding of the DNA onto the Fractogel, Sepharose, and Streamline matrices was 0.0078 ± 0.0013, 0.0095 ± 0.0016, and 0.0080 ± 0.0006 mg, respectively, to 50 μL of adsorbent. At a higher DNA challenge, the corresponding amounts were 0.0179 ± 0.0043, 0.0219 ± 0.0035, and 0.0190 ± 0.0041 mg, respectively. The relatively constant amounts bound to the three adsorbents indicated that the large DNA molecule was unable to utilize the available zinc finger sites that were located in the internal pores and binding was largely a surface adsorption phenomenon. Utilization of the zinc finger binding sites was shown to be highest for the Fractogel adsorbent. The adsorbed material was eluted with reduced glutathione, and the eluted efficiency for the DNA was between 23% and 27%. The protein elution profile appeared to match the adsorption profiles with significantly higher recoveries of bound GST-zinc finger protein.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mycobacterium smegmatis topoisomerase I (Mstopol) is distinct from typical type IA topoisomerases. The enzyme binds to both single- and double-stranded DNA with high affinity, making specific contacts. The enzyme comprises conserved regions similar to type IA topoisomerases from Escherichia coli and other eubacteria but lacks the typically found zinc fingers in the carboxy-terminal domain. The enzyme can perform DNA cleavage m the absence of Mg2+ but religation needs exogenously added Mg2+. One molecule of Mg2+ tightly bound to the enzyme has no role in DNA cleavage but is needed only for the religation reaction. The toprim. (topoisomerase-primase) domain in MstopoI comprising the Mg2+ binding pocket, conserved in both type IA and type II topoisomerases, was subjected to mutagenesis to understand the role of Mg2+, in different steps of the reaction. The residues D108, D110, and E112 of the enzyme, which form the acidic triad in the DXDXE motif, were changed to alanines. D108A mutation resulted in an enzyme that is Mg2+ dependent for DNA cleavage unlike Mstopol and exhibited enhanced DNA cleavage property and reduced religation activity. The mutant was toxic for cell growth, most likely due to the imbalance in cleavage-religation equilibrium. In contrast, the E112A mutant behaved like wild-type enzyme, cleaving DNA in a Mg2+-independent fashion, albeit to a reduced extent. Intra- and intermolecular religation assays indicated specific roles for D108 and E112 residues during the reaction. Together, these results indicate that the D108 residue has a major role during cleavage and religation, while E112 is important for enhancing the efficiency of cleavage. Thus, although architecturally and mechanistically similar to topoisomerase I from E. coli, the metal coordination pattern of the mycobacterial enzyme is distinct, opening up avenues to exploit the enzyme to develop inhibitors.