988 resultados para Yersinia spp.
Resumo:
Over the past 9 years, 468 bacterial strains isolated from raw and pasteurized milk, beef and pork, bovine and chicken liver, chicken heart, gizzards and lung sausage, hamburger, cheese and lettuce in different regions of the State of Sao Paulo and in the city of Rio de Janeiro were received by the Reference Laboratory for Yersinia in Brazil. All were confirmed to be Yersinia spp. The 468 Yersinia isolates were grouped as 184 strains because some of the bacteria isolated from the same food sample belonged to the same species, and were considered to be a single strain. The Yersinia food strains were classified as Y. enterocolitica (46), Y. intermedia (67), Y. frederiksenii (20), Y. kristensenii (8) and 43 of them were biochemically atypical. Pathogenic types were not detected.
Resumo:
The hydrophobic probe N-phenyl-1-naphthylamine accumulated less in non-pathogenic Yersinia spp. and non-pathogenic and pathogenic Yersinia enterocolitica than in Yersinia pseudotuberculosis or Yersinia pestis. This was largely due to differences in the activity of efflux systems, but also to differences in outer membrane permeability because uptake of the probe in KCN/arsenate-poisoned cells was slower in the former group than in Y. pseudotuberculosis and Y. pestis. The probe accumulation rate was higher in Y. pseudotuberculosis and Y. pestis grown at 37 degrees C than at 26 degrees C and was always highest in Y. pestis. These yersiniae had LPSs with shorter polysaccharides than Y. enterocolitica, particularly when grown at 37 degrees C. Gelliquid-crystalline phase transitions (Tc 28-31 degrees C) were observed in LPS aggregates of Y. enterocolitica grown at 26 and 37 degrees C, with no differences between non-pathogenic and pathogenic strains. Y. pseudotuberculosis and Y. pestis LPSs showed no phase transitions and, although the fluidity of LPSs of Y. pseudotuberculosis and Y. enterocolitica grown at 26 degrees C were close below the Tc of the latter, they were always in a more fluid state than Y. enterocolitica LPS. Comparison with previous studies of Salmonella choleraesuis subsp. choleraesuis serotype minnesota rough LPS showed that the increased fluidity and absence of transition of Y. pseudotuberculosis and Y. pestis LPSs cannot be explained by their shorter polysaccharides and suggested differences at the lipid A/core level. It is proposed that differences in LPS-LPS interactions and efflux activity explain the above observations and reflect the adaptation of Yersinia spp. to different habitats.
Resumo:
The action of bactericidal polycationic peptides was compared in Yersinia spp. by testing peptide binding to live cells and changes in outer membrane (OM) morphology and permeability. Moreover, polycation interaction with LPS was studied by measuring the dependence of dansylcadaverine displacement and zeta potential on polycation concentration. When growth at 37 degrees C, Yersinia pestis and Yersinia pseudotuberculosis bound less polymyxin B (PMB) than pathogenic or non-pathogenic Yersinia enterocolitica, regardless of virulence plasmid expression. Y. pseudotuberculosis OMs were unharmed by PMB concentrations causing extensive OM blebbing in Y. enterocolitica. The permeability to lysozyme caused by PMB was greater in Y. enterocolitica than in Y. pseudotuberculosis or Y. pestis and differences increased at 37 degrees C. Similar observations were made with other polycations using a polymyxin/novobiocin permeability assay. With LPS of cells grown at 26 degrees C, polycation binding was highest for Y. pseudotuberculosis and lowest for Y. pestis, with Y. enterocolitica yielding intermediate results which were lower for pathogenic than for non-pathogenic strains. With LPS of cells grown at 37 degrees C, polycation binding remained unchanged for Y. pestis and pathogenic Y. enterocolitica, increased for non-pathogenic Y. enterocolitica and decreased for Y. pseudotuberculosis to Y. pestis levels. Polycation binding related in part to differences in charge density (zeta potential) of LPS aggregates, suggesting similar effects at bacterial surfaces. It is suggested that species and temperature differences in polycation resistance relate to infection route, invasiveness and intracellular multiplication of Yersinia spp.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aims: To determine the species, bio-sero-phagetypes, antimicrobial drug resistance and also the pathogenic potential of 144 strains of Yersinia spp. isolated from water sources and sewage in Brazil.Methods and Results: the 144 Yersinia strains were characterized biochemically, serologically and had their antibiotic resistance and phenotypic virulence markers determined by microbiological and serological standard techniques. The Y. enterocolitica strains related to human diseases were also tested for the presence of virulence genes, by the PCR technique. The isolates were classified as Y. enterocolitica, Y. intermedia, Y. frederiksenii, Y. kristensenii and Yersinia biochemically atypical. The 144 isolates belonged to various bio-serogroups. Half of the strains showed resistance to three or more drugs. The Y. enterocolitica strains related to human diseases exhibited phenotypic virulence characteristics and virulence genes.Conclusions: Water from various sources and sewage are contaminated with Yersinia spp. in Brasil. Among these bacteria, virulent strains of Y. enterocolitica were found, with biotypes and serogroups related to human diseases.Significance and Impact of the Study: This is the first documented description of the occurrence of pathogenic Y. enterocolitica in water sources and sewage in Brazil. The occurrence of virulence strains of Y. enterocolitica shows that the environment is a potential source of human infection by this species in this country.
Resumo:
Data on the occurrence of Yersinia species, other than Y. pestis in Brazil are presented. Over the past 40 years, 767 Yersinia strains have been identified and typed by the National Reference Center on Yersinia spp. other than Y. pestis, using the classical biochemical tests for species characterization. The strains were further classified into biotypes, serotypes and phagetypes when pertinent. These tests led to the identification of Yersinia cultures belonging to the species Y. enterocolitica, Y. pseudotuberculosis, Y. intermedia, Y. frederiksenii and Y. kristensenii. Six isolates could not be classified in any of the known Yersinia species and for this reason were defined as Non-typable (NT). The bio-sero-phagetypes of these strains were diverse. The following species of Yersinia were not identified among the Brazilian strains by the classical phenotypic or biochemical tests: Y. aldovae, Y. rhodei, Y. mollaretti, Y. bercovieri and Y. ruckeri. The Yersinia strains were isolated from clinical material taken from sick and/or healthy humans and animals, from various types of food and from the environment, by investigators of various Institutions localized in different cities and regions of Brazil.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this study, 231 strains of Yersinia enterocolitica, 25 strains of Y. intermedia, and 10 strains of Y. bercovieri from human and porcine sources (including reference strains) were analyzed using amplified fragment length polymorphism (AFLP), a whole-genome fingerprinting method for subtyping bacterial isolates. AFLP typing distinguished the different Yersinia species examined. Representatives of Y. enterocolitica biotypes 1A, 1B, 2, 3, and 4 belonged to biotype-related AFLP clusters and were clearly distinguished from each other. Y. enterocolitica biotypes 2, 3, and 4 appeared to be more closely related to each other (83% similarity) than to biotypes 1A (11%) and 1B (47%). Biotype 1A strains exhibited the greatest genetic heterogeneity of the biotypes studied. The biotype 1A genotypes were distributed among four major clusters, each containing strains from both human and porcine sources, confirming the zoonotic potential of this organism. The AFLP technique is a valuable genotypic method for identification and typing of Y. enterocolitica and other Yersinia spp.
Resumo:
Pathogenic Yersinia spp. carry a large common plasmid that encodes a number of essential virulence determinants. Included in these factors are the Yersinia-secreted proteins called Yops. We analyzed the consequences of wild-type and mutant strains of Yersinia pseudotuberculosis interactions with the macrophage cell line RAW264.7 and murine bone marrow-derived macrophages. Wild-type Y. pseudotuberculosis kills ≈70% of infected RAW264.7 macrophages and marrow-derived macrophages after an 8-h infection. We show that the cell death mediated by Y. pseudotuberculosis is apoptosis. Mutant Y. pseudotuberculosis that do not make any Yop proteins no longer cause host cell death. Attachment to host cells via invasin or YadA is necessary for the cell death phenotype. Several Yop mutant strains that fail to express one or more Yop proteins were engineered and then characterized for their ability to cause host cell death. A mutant with a polar insertion in YpkA Ser/Thr kinase that does not express YpkA or YopJ is no longer able to cause apoptosis. In contrast, a mutant no longer making YopE or YopH (a tyrosine phosphatase) induces apoptosis in macrophages similar to wild type. When yopJ is added in trans to the ypkAyopJ mutant, the ability of this strain to signal programmed cell death in macrophages is restored. Thus, YopJ is necessary for inducing apoptosis. The ability of Y. pseudotuberculosis to promote apoptosis of macrophages in cell culture suggests that this process is important for the establishment of infection in the host and for evasion of the host immune response.
Resumo:
Com o objetivo de caracterizar os principais enteropatógenos causadores de diarréia na região de Ribeirão Preto, quanto aos sorogrupos e sorotipos, por um período de 4 anos foram estudadas fezes de 1836 crianças, menores de 10 anos de idade, de ambos os sexos, portadoras de gastrenterite aguda no IAL de Ribeirão Preto, SP. Foram pesquisados os seguintes enteropatógenos: Escherichia coli, Salmonella sp., Shigella sp., Campylobacter sp., Yersinia sp., e Cryptosporidium sp., identificados através de metodologia tradicional. Foram positivas 419 (22,8%) amostras, com 1,7% de associação entre enteropatógenos. Houve predomínio na faixa etária de 0 a 11 meses. Destacou-se a E.coli enteropatogênica (EPEC) (8,7%), sendo mais frequente o sorogrupo O119 (40,2%), seguida do gênero Shigella (6,2%), dos quais 63,2% corresponderam à S. sonnei.
Resumo:
Extended storage of refrigerated milk can lead to reduced quality of raw and processed milk, which is a consequence of the growth and metabolic activities of psychrotrophic bacteria, able to grow under 7oC or lower temperatures. Although most of these microorganisms are destroyed by heat treatment, some have the potential to produce termoresistant proteolytic and lipolytic enzymes that can survive even UHT processing and reduce the processed products quality. Recently, the IN 51 determineds that milk should be refrigerated and stored at the farm what increased the importance of this group of microorganisms. In this work, psychrotrophic bacteria were isolated from 20 communitarian bulk tanks and 23 individual bulk tanks from dairy farms located at Zona da Mata region of Minas Gerais State and from southeastern Rio de Janeiro. Selected milk dilutions were plated on standard agar and after incubation for 10 days at 7oC, five colonies were isolated, firstly using nutrient agar and after using McConkey agar for 24 hours at 21oC. The isolates were identified by morphology, Gram stain method, catalase production, fermentative/oxidative metabolism and by API 20E, API 20NE, API Staph, API Coryne or API 50 CH (BioMerieux). In order to ensure reproductibility, API was repeated for 50% of the isolates. Species identification was considered when APILAB indexes reached 75% or higher. 309 strains were isolated, 250 Gram negative and 59 Gram positive. 250 Gram negative isolates were identified as: Acinetobacter spp. (39), Aeromonas spp. (07), A. Hydrophila (16), A. sobria (1), A. caviae (1), Alcaligenes feacalis (1), Burkholderia cepacia (12), Chryseomonas luteola (3), Enterobacter sp. (1), Ewingella americana(6), Hafnia alvei (7), Klebsiella sp. (1), Klebsiella oxytoca (10), Yersinia spp. (2), Methylobacterium mesophilicum (1), Moraxella spp. (4), Pantoea spp. (16), Pasteurella sp. (1), Pseudomonas spp. (10), P. fluorescens (94), P. putida (3), Serratia spp. (3), Sphigomonas paucomobilis (1). Five isolates kept unidentified. Pseudomonas was the predominant bacteria found (43%) and P. fluorescens the predominant species (37.6%), in accordance with previous reports. Qualitative analysis of proteolytic and lipolytic activity was based on halo formation using caseinate agar and tributirina agar during 72 hours at 21oC and during 10 days at 4°C, 10oC and 7°C. Among 250 Gram negative bacteria found, 104 were identified as Pseudomonas spp. and 60,57% of this group showed proteolytic and lipolytic acitivities over all four studied temperatures. 20% of Acinetobacter, Aeromonas, Alcaligenes, Burkholderia, Chryseomonas, Methylobacterium, Moraxella presented only lipolytic activity. Some isolates presented enzymatic activity in one or more studied temperatures. Among Gram positive bacteria, 30.51% were proteolytic and lipolytic at 10oC, 8.47% were proteolytic at 7oC, 10oC, and 21oC, 8.47% were proteolytic at all studied temperatures (4oC, 7oC, 10oC and 21oC) and 3.38% were proteolytic only at 21oC. At 4oC, only one isolate showed proteolytic activity and six isolates were lipolytic. In relation to Gram negative microorganisms, 4% were proteolytic and lipolytic at 7oC, 10oC and 21oC, 10% were proteolytic at 10oC and 4.4% were lipolytic at 4oC, 7oC, 10oC and 21oC, while 6.4% of all isolates were proteolytic and lipolytic at 10oC and 21oC as well as lipolytic at 4oC and 7oC. These findings are in accordance with previous researches that pointed out Pseudomonas as the predominant psycrotrophic flora in stored refrigerated raw milk
Resumo:
Ice used for human consumption or to refrigerate foods can be contaminated with pathogenic microorganisms and may become a vehicle for human infection. To evaluate the microbiological content of commercial ice and ice used to refrigerate fish and seafood, 60 ice samples collected at six different retail points in the city of Araraquara, SP, Brazil, were studied. The following parameters were determined: total plate counts (37° C and 4° C), most probable number (MPN) for total coliforms, fecal coliforms and Escherichia coli, presence of Salmonella spp., Shigella spp., Yersinia spp., E. coli, Vibrio cholerae and Aeromonas spp.. Results suggested poor hygienic conditions of ice production due to the presence of indicator micro-organisms. Fifty strains of E. coli of different serotypes, as well as one Y. enterocolitica biotype 1, serogroup 0:5, 27 and phage type Xz (Ye 1/05,27/Xz) and one Salmonella Enteritidis phage type 1 (PT1) were isolated. Aeromonas spp., Shigella spp. and V. cholerae were not detected. The presence of high numbers of coliforms, heterotrophic indicator micro-organisms and pathogenic strains suggested that commercial ice and ice used to refrigerate fish and seafood may rep resent a potential hazard to the consumer in our community. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
After an outbreak of Yersinia enterocolitica at a NHP research facility, we performed a multispecies investigation of the prevalence of Yersinia spp. in various mammals that resided or foraged on the grounds of the facility, to better understand the epizootiology of yersiniosis. Blood samples and fecal and rectal swabs were obtained from 105 captive African green monkeys (AGM), 12 feral cats, 2 dogs, 20 mice, 12 rats, and 3 mongooses. Total DNA extracted from swab suspensions served as template for the detection of Y. enterocolitica DNA by real-time PCR. Neither Y. enterocolitica organisms nor their DNA were detected from any of these samples. However, Western blotting revealed the presence of Yersinia antibodies in plasma. The AGM samples revealed a seroprevalence of 91% for Yersinia spp. and of 61% for Y. enterocolitica specifically. The AGM that were housed in cages where at least one fatality occurred during the outbreak (clinical group) had similar seroprevalence to that of AGM housed in unaffected cages (nonclinical group). However, the nonclinical group was older than the clinical group. In addition, 25%, 100%, 33%, 10%, and 10% of the sampled local cats, dogs, mongooses, rats, and mice, respectively, were seropositive. The high seroprevalence after this outbreak suggests that Y. enterocolitica was transmitted effectively through the captive AGM population and that age was an important risk factor for disease. Knowledge regarding local environmental sources of Y. enterocolitica and the possible role of wildlife in the maintenance of yersiniosis is necessary to prevent and manage this disease.
Resumo:
A 70-kb virulence plasmid (sometimes called pYV) enables Yersinia spp. to survive and multiply in the lymphoid tissues of their host. It encodes the Yop virulon, a system consisting of secreted proteins called Yops and their dedicated type III secretion apparatus called Ysc. The Ysc apparatus forms a channel composed of 29 proteins. Of these, 10 have counterparts in almost every type III system. Secretion of some Yops requires the assistance, in the bacterial cytosol, of small individual chaperones called the Syc proteins. These chaperones act as bodyguards or secretion pilots for their partner Yop. Yop proteins fall into two categories. Some are intracellular effectors, whereas the others are “translocators” needed to deliver the effectors across the eukaryotic plasma membrane, into eukaryotic cells. The translocators (YopB, YopD, LcrV) form a pore of 16–23 Å in the eukaryotic cell plasma membrane. The effector Yops are YopE, YopH, YpkA/YopO, YopP/YopJ, YopM, and YopT. YopH is a powerful phosphotyrosine phosphatase playing an antiphagocytic role by dephosphorylating several focal adhesion proteins. YopE and YopT contribute to antiphagocytic effects by inactivating GTPases controlling cytoskeleton dynamics. YopP/YopJ plays an anti-inflammatory role by preventing the activation of the transcription factor NF-κB. It also induces rapid apoptosis of macrophages. Less is known about the role of the phosphoserine kinase YopO/YpkA and YopM.