994 resultados para Y-CHROMOSOMES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To test the hypotheses of modern human origin in East Asia, we sampled 12,127 male individuals from 163 populations and typed for three Y chromosome biallelic markers (YAP, M89, and M130). All the individuals carried a mutation at one of the three sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The regular mammalian X and Y chromosomes diverged from each other at least 166 to 148 million years ago, leaving few traces of their early evolution, including degeneration of the Y chromosome and evolution of dosage compensation. Results: We

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Le développement sexuel est un processus complexe qui dépend de nombreux gènes, une mutation pouvant entraîner un développement sexuel anormal. Par ailleurs, des anomalies chromosomiques peuvent avoir des répercussions importantes sur la détermination gonadique, surtout lorsqu'il s'agit du chromosome Y puisqu'il porte le gène clé du développement sexuel masculin. Premièrement, nous avons identifié par cytogénétique moléculaire le point de cassure chez 5 patients avec une translocation X;Y et 10 patients avec un chromosome Y isodicentrique. Nous avons ainsi démontré que certaines régions sont plus à risque d'être remaniées, notamment lorsqu'elles contiennent des palindromes ou d'autres séquences répétées. Nous avons également établi une relation entre la distance séparant le centromère et le point de cassure et l'instabilité des chromosomes Y isodicentriques lors des divisions cellulaires. Deuxièmement, nous avons étudié en cytogénétique les gonades de 22 patients avec un chromosome Y normal ou remanié et présentant un développement sexuel anormal. Nous avons mis en évidence la perte du chromosome Y remanié dans une majorité de cellules gonadiques des 10 patients étudiés, expliquant leur phénotype sexuel anormal. Cependant, chez 11 des 12 patients avec un chromosome Y normal, aucun mosaïcisme expliquant clairement leur détermination gonadique anormale n'a été retrouvé. Finalement, nous avons analysé par immunohistochimie les gonades dysgénésiques de 30 patients avec une anomalie du développement sexuel et un chromosome Y normal ou remanié. Nos travaux ont montré la présence de cellules germinales immatures au sein de cordons sexuels primitifs sous forme de tissu gonadique indifférencié dans 15 gonades, dont 9 ont évolué en tumeur gonadique. Dans 13 autres gonades, ces cellules germinales immatures avaient disparues par apoptose. Dans l'ensemble, notre recherche met en évidence la susceptibilité du chromosome Y à subir des remaniements et à être instable lors des divisions cellulaires, et indique que le mosaïcisme peut avoir des répercussions sur la détermination gonadique. Nos travaux montrent également que le tissu gonadique indifférencié peut évoluer vers deux entités, une tumeur gonadique ou une bandelette suite à l'apoptose des cellules germinales, mettant en lumière la nécessité d'analyser le tissu gonadique des patients XY avec dysgénésie gonadique dont les gonades sont laissées en place.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Neotropical genus Eigenmannia is a fish group with unknown species diversity where representatives possess a broad range of chromosomal sex determining systems namely XY/XX, X1X2Y/X1X1X2X2, ZZ/ZW as well as homomorphic sex chromosomes. To test the homology of two heteromorphic XY sex chromosome systems present in two sympatric populations, reciprocal cross-species FISH experiments were performed using probes derived by microdissection of X and Y chromosomes present in analyzed specimens of Eigenmannia virescens and Eigenmannia sp.2, respectively. While X and Y paint probes hybridized to species-specific sex chromosomes, in reciprocal cross-FISH both probes hybridized exclusively to autosomes. The result suggests multiple independent origins of the XY systems in the analyzed populations. Copyright (C) 2008 S. Karger AG, Basel.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Repetitive DNAs have been extensively applied as physical chromosome markers on comparative studies, identification of chromosome rearrangements and sex chromosomes, chromosome evolution analysis, and applied genetics. Here we report the characterization of repetitive DNA sequences from the Nile tilapia (Oreochromis niloticus) genome by construction and screening of plasmid library enriched with repetitive DNAs, analysis of a BAC-based physical map, and hybridization to chromosomes. The physical mapping of BACs enriched with repetitive sequences and C(o)t-1 DNA (DNA enriched for highly and moderately repetitive DNA sequences) to chromosomes using FISH showed a predominant distribution of repetitive elements in the centromeric and telomeric regions and along the entire length of the largest chromosome pair (X and Y sex chromosomes) of the species. The distribution of repetitive DNAs differed significantly between the p arm of X and Y chromosomes. These findings suggest that repetitive DNAs have had an important role in the differentiation of sex chromosomes. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Y chromosomes are genetically degenerate and do not recombine with their matching partners X. Non-recombination of XY pairs has been pointed out as the key factor for the degeneration of the Y chromosome. The aim here is to show that there is a mathematical asymmetry in sex chromosomes which leads to the degeneration of Y chromosomes even in the absence of XX and XY recombination. A model for sex-chromosome evolution in a stationary regime is proposed. The consequences of their asymmetry are analyzed and lead us to a couple of conclusions. First, Y chromosome degeneration shows up v 2 more often than X chromosome degeneration. Second, if nature prohibits female mortalities from beeing exactly 50%, then Y chromosome degeneration is inevitable.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Y chromosomes are genetically degenerated and do not recombine with their matching partners X. Recombination of XX pairs is pointed out as the key factor for the Y chromosome degeneration. However, there is an additional evolutionary force driving sex-chromosomes evolution. Here we show this mechanism by means of two different evolutionary models, in which sex chromosomes with non-recombining XX and XY pairs of chromosomes is considered. Our results show three curious effects. First, we observed that even when both XX and XY pairs of chromosomes do not recombine, the Y chromosomes still degenerate. Second, the accumulation of mutations on Y chromosomes followed a completely different pattern then those accumulated on X chromosomes. and third, the models may differ with respect to sexual proportion. These findings suggest that a more primeval mechanism rules the evolution of Y chromosomes due exclusively to the sex-chromosomes asymmetry itself, i.e., the fact that Y chromosomes never experience female bodies. Over aeons, natural selection favored X chromosomes spontaneously, even if at the very beginning of evolution, both XX and XY pairs of chromosomes did not recombine.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Meiosis and (or) mitosis of males and females of Cryptotermes brevis, Eucryptotermes wheeleri, and Neotermes fulvescens, all of them from the neotropical region, were analyzed. Cryptotermes brevis showed a similar karyotype to that obtained by other authors for specimens of the neartic and Australian regions (2n = 36 for females and 2n = 37 for males, with XX and XYY sex mechanisms, respectively). Eucryptotermes wheeleri, the only species that has been described in this genus, showed the lowest number of chromosomes reported for Isoptera (2n = 22) until now. The male meiosis of this species presents a linear chain of six sex chromosomes, three of them being X and three of them Y chromosomes. Neotermes fulvescens showed a diploid number of 40 for males and 42 for females and, in the first male meiosis, two linear chains of chromosomes, both related to sex. One of the chains, named A, presented nine chromosomes and the other, named B, seven chromosomes. Hypotheses to explain these mechanisms are formulated in this paper and putative ancestral relationships with other species of Kalotermitidae are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Akodontini is the second most speciose tribe of sigmodontine rodents, one of the most diverse groups of neotropical mammals. Molecular phylogenetic analyses are discordant regarding the interrelationships of genera, with low support for some clades. However, two clades are concordant, one (clade A) with Akodon sensu strictu (excluding Akodon serrensis), "Akodon" serrensis, Bibimys, Deltamys, Juscelinomys, Necromys, Oxymycterus, Podoxymys, Thalpomys and Thaptomys, and another (clade B) with Blarinomys, Brucepattersonius, Kunsia, Lenoxus and Scapteromys. Here, we present chromosome painting using Akodon paranaensis (APA) Y paint, after suppression of simple repetitive sequences, on ten Akodontini genera. Partial Y chromosome homology, in addition to the homology already reported on the Akodon genus, was detected on the Y chromosomes of "A." serrensis, Thaptomys, Deltamys, Necromys and Thalpomys and on Y and X chromosomes in Oxymycterus. In Blarinomys, Brucepattersonius, Scapteromys and Kunsia, no APA Y signal was observed using different hybridization conditions; APA X paint gave positive signals only on the X chromosome in all genera. The Y chromosome homology was variable in size and positioning among the species studied as follow: (1) whole acrocentric Y chromosome in Akodon and "A." serrensis, (2) Yp and pericentromeric region in submetacentric Y of Necromys and Thaptomys, (3) pericentromeric region in acrocentric Y of Deltamys, (4) distal Yq in the acrocentric Y chromosome of Thalpomys and (5) proximal Yq in the acrocentric Y and Xp in the basal clade A genus Oxymycterus. The results suggest that the homology involves pairing (pseudoautosomal) and additional regions that have undergone rearrangement during divergence. The widespread Y homology represents a phylogenetic signal in Akodontini that provides additional evidence supporting the monophyly of clade A. The findings also raise questions about the evolution of the pseudoautosomal region observed in Oxymycterus. The Y chromosomes of these closely related species seem to have undergone dynamic rearrangements, including restructuring and reduction of homologous segments. Furthermore, the changes observed may indicate progressive attrition of the Y chromosome in more distantly related species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Diversity patterns of livestock species are informative to the history of agriculture and indicate uniqueness of breeds as relevant for conservation. So far, most studies on cattle have focused on mitochondrial and autosomal DNA variation. Previous studies of Y-chromosomal variation, with limited breed panels, identified two Bos taurus (taurine) haplogroups (Y1 and Y2; both composed of several haplotypes) and one Bos indicus (indicine/zebu) haplogroup (Y3), as well as a strong phylogeographic structuring of paternal lineages. METHODOLOGY AND PRINCIPAL FINDINGS: Haplogroup data were collected for 2087 animals from 138 breeds. For 111 breeds, these were resolved further by genotyping microsatellites INRA189 (10 alleles) and BM861 (2 alleles). European cattle carry exclusively taurine haplotypes, with the zebu Y-chromosomes having appreciable frequencies in Southwest Asian populations. Y1 is predominant in northern and north-western Europe, but is also observed in several Iberian breeds, as well as in Southwest Asia. A single Y1 haplotype is predominant in north-central Europe and a single Y2 haplotype in central Europe. In contrast, we found both Y1 and Y2 haplotypes in Britain, the Nordic region and Russia, with the highest Y-chromosomal diversity seen in the Iberian Peninsula. CONCLUSIONS: We propose that the homogeneous Y1 and Y2 regions reflect founder effects associated with the development and expansion of two groups of dairy cattle, the pied or red breeds from the North Sea and Baltic coasts and the spotted, yellow or brown breeds from Switzerland, respectively. The present Y1-Y2 contrast in central Europe coincides with historic, linguistic, religious and cultural boundaries.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Association between Y chromosome haplotype variation and alcohol dependence and related personality traits was investigated in a large sample of psychiatrically diagnosed Finnish males. Haplotypes were constructed for 359 individuals using alleles at eight loci (seven microsatellite loci and a nucleotide substitution in the DYZ3 alphoid satellite locus). A cladogram linking the 102 observed haplotype configurations was constructed by using parsimony with a single-step mutation model. Then, a series of contingency tables nested according to the cladogram hierarchy were used to test for association between Y haplotype and alcohol dependence. Finally, using only alcohol-dependent subjects, we tested for association between Y haplotype and personality variables postulated to define subtypes of alcoholism—antisocial personality disorder, novelty seeking, harm avoidance, and reward dependence. Significant association with alcohol dependence was observed at three Y haplotype clades, with significance levels of P = 0.002, P = 0.020, and P = 0.010. Within alcohol-dependent subjects, no relationship was revealed between Y haplotype and antisocial personality disorder, novelty seeking, harm avoidance, or reward dependence. These results demonstrate, by using a fully objective association design, that differences among Y chromosomes contribute to variation in vulnerability to alcohol dependence. However, they do not demonstrate an association between Y haplotype and the personality variables thought to underlie the subtypes of alcoholism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Because the two sexes share a common gene pool while performing many different biological functions, mutations benefiting one sex may not accumulate due to counter selection in the other sex. In these experiments 99% of a haploid genome of Drosophila melanogaster was constrained to segregate like a male-limited Y chromosome for 41 generations, thereby eliminating potential counter selection in females. The synthetic Y chromosomes rapidly accumulated genetic variation that increased male fitness and decreased female fitness. The survival and fertility of females declined when they were mated to males expressing the synthetic Y chromosomes. These results suggests that opposing selection between the sexes may substantially interfere with sex-specific adaptation. They also demonstrate how intersexual evolutionary conflict can lead to perpetual degeneration of the Y via genetic hitchhiking of deleterious mutations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two Bolivian samples belonging to the two main Andean linguistic groups (Aymaras and Quechuas) were studied for mtDNA and Y-chromosome uniparental markers to evaluate sex-specific differences and give new insights into the demographic processes of the Andean region. mtDNA-coding polymorphisms, HVI-HVII control regions, 17 Y-STRs, and three SNPs were typed in two well-defined populations with adequate size samples. The two Bolivian samples showed more genetic differences for the mtDNA than for the Y-chromosome. For the mtDNA, 81% of Aymaras and 61% of Quechuas presented haplogroup B2. Native American Y-chromosomes were found in 97% of Aymaras (89% hg Q1a3a and 11% hg Q1a3*) and 78% of Quechuas (100% hg Q1a3a). Our data revealed high diversity values in the two populations, in agreement with other Andean studies. The comparisons with the available literature for both sets of markers indicated that the central Andean area is relatively homogeneous. For mtDNA, the Aymaras seemed to have been more isolated throughout time, maintaining their genetic characteristics, while the Quechuas have been more permeable to the incorporation of female foreigners and Peruvian influences. On the other hand, male mobility would have been widespread across the Andean region according to the homogeneity found in the area. Particular genetic characteristics presented by both samples support a past common origin of the Altiplano populations in the ancient Aymara territory, with independent, although related histories, with Peruvian (Quechuas) populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Norfolk Island population in the South Pacific is primarily the product of recent admixture between a small number of British male and Polynesian female founders. We identified and genotyped 128 Ancestry Informative Markers (AIMs) spread across the autosomes, X/Y chromosomes and mitochondrial DNA genome, to explore and quantify the current levels of genetic admixture in the Norfolk Islanders. On the basis of autosomal AIMs, the population shows mean European and Polynesian ancestry proportions of 88 and 12%, respectively. However, there is a substantial variation between individuals ranging from total European ancestry to near total Polynesian origin. There is a strong correlation between individual genetic estimates of Polynesian ancestry and those derived from the extensive pedigree and genealogical records of Islanders. Also in line with historical accounts, there is a substantial asymmetry in the maternal and paternal origins of the Islanders with almost all Y-chromosomes of European origin whereas at least 25% of mtDNAs appear to have a Polynesian origin. Accurate knowledge of ancestry will be important in future attempts to use the Island population in admixture mapping approaches to find the genes that underlie differences in the risk to some diseases between Europeans and Polynesians.