976 resultados para Xanthine oxidase


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The alpha-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB`s cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37 degrees C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other alpha-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml(-1)) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(center dot), and those with alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(center dot) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 mu M) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have recently demonstrated that hypertriglyceridemic (HTG) mice present both elevated body metabolic rates and mild mitochondrial uncoupling in the liver owing to stimulated activity of the ATP-sensitive potassium channel (mitoK(ATP)). Because lipid excess normally leads to cell redox imbalance, we examined the hepatic oxidative status in this model. Cell redox imbalance was evidenced by increased total levels of carbonylated proteins, malondialdehydes, and GSSG/GSH ratios in HTG livers compared to wild type. In addition, the activities of the extramitochondrial enzymes NADPH oxidase and xanthine oxidase were elevated in HTG livers. In contrast, Mn-superoxide dismutase activity and content, a mitochondrial matrix marker, were significantly decreased in HTG livers. isolated HTG liver mitochondria presented lower rates of H(2)O(2) production, which were reversed by mitoK(ATP) antagonists. In vivo antioxidant treatment with N-acetylcysteine decreased both mitoKATP activity and metabolic rates in HTG mice. These data indicate that high levels of triglycerides increase reactive oxygen generation by extramitochondrial enzymes that promote MitoK(ATP) activation. The mild uncoupling mediated by mitoK(ATP) increases metabolic rates and protects mitochondria against oxidative damage. Therefore, a biological role for mitoK(ATP) is a redox sensor is shown here for the first time in an in vivo model of systemic and cellular lipid excess, (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Object  In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time.

Methods  The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme–linked electrode to measure glutamate; and 3) a multiple enzyme–linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig.

Results   The WINCS, which is designed in compliance with FDA-recognized consensus standards for medical electrical device safety, successfully measured dopamine, glutamate, and adenosine, both in vitro and in vivo. The WINCS detected striatal dopamine release at the implanted CFM during DBS of the MFB. The DBS-evoked adenosine release in the rat thalamus and MCS-evoked glutamate release in the pig cortex were also successfully measured. Overall, in vitro and in vivo testing demonstrated signals comparable to a commercial hardwired electrochemical system for FPA.

Conclusions  By incorporating FPA, the chemical repertoire of WINCS-measurable neurotransmitters is expanded to include glutamate and other nonelectroactive species for which the evolving field of enzyme-linked biosensors exists. Because many neurotransmitters are not electrochemically active, FPA in combination with enzyme-linked microelectrodes represents a powerful intraoperative tool for rapid and selective neurochemical sampling in important anatomical targets during functional neurosurgery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is considerable support for the concept that insulin-mediated increases in microvascular blood flow to muscle impact significantly on muscle glucose uptake. Since the microvascular blood flow increases with insulin have been shown to be nitric oxide-dependent inhibition of cGMP-degrading phosphodiesterases (cGMP PDEs) is predicted to enhance insulin-mediated increases in microvascular perfusion and muscle glucose uptake. Therefore, we studied the effects of the pan-cGMP PDE inhibitor zaprinast on the metabolic and vascular actions of insulin in muscle. Hyperinsulinemic euglycemic clamps (3 mU·min−1·kg−1) were performed in anesthetized rats and changes in microvascular blood flow assessed from rates of 1-methylxanthine metabolism across the muscle bed by capillary xanthine oxidase in response to insulin and zaprinast. We also characterized cGMP PDE isoform expression in muscle by real-time PCR and immunostaining of frozen muscle sections. Zaprinast enhanced insulin-mediated microvascular perfusion by 29% and muscle glucose uptake by 89%, while whole body glucose infusion rate during insulin infusion was increased by 33% at 2 h. PDE2, -9, and -10 were the major isoforms expressed at the mRNA level in muscle, while PDE1B, -9A, -10A, and -11A proteins were expressed in blood vessels. Acute administration of the cGMP PDE inhibitor zaprinast enhances muscle microvascular blood flow and glucose uptake response to insulin. The expression of a number of cGMP PDE isoforms in skeletal muscle suggests that targeting specific cGMP PDE isoforms may provide a promising avenue for development of a novel class of therapeutics for enhancing muscle insulin sensitivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metabolic stresses associated with disease, ageing, and exercise increase the levels of reactive oxygen species (ROS) in skeletal muscle. These ROS have been linked mechanistically to adaptations in skeletal muscle that can be favourable (i.e. in response to exercise) or detrimental (i.e. in response to disease). The magnitude, duration (acute versus chronic), and cellular origin of the ROS are important underlying factors in determining the metabolic perturbations associated with the ROS produced in skeletal muscle. In particular, insulin resistance has been linked to excess ROS production in skeletal muscle mitochondria. A chronic excess of mitochondrial ROS can impair normal insulin signalling pathways and glucose disposal in skeletal muscle. In contrast, ROS produced in skeletal muscle in response to exercise has been linked to beneficial metabolic adaptations including mitochondrial biogenesis and muscle hypertrophy. Moreover, unlike insulin resistance, exercise-induced ROS appears to be primarily of non-mitochondrial origin. The present review summarizes the diverse ROS-targeted metabolic outcomes associated with insulin resistance versus exercise in skeletal muscle, thus, presenting two contrasting perspectives of pathologically harmful versus physiologically beneficial ROS. Here, we discuss the key sites of ROS production during exercise and the effect of ROS in skeletal muscle of people with type 2 diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hormesis encompasses the notion that low levels of stress stimulate or upregulate existing cellular and molecular pathways that improve the capacity of cells and organisms to withstand greater stress. This notion underlies much of what we know about how exercise conditions the body and induces long-term adaptations. During exercise, the body is exposed to various forms of stress, including thermal, metabolic, hypoxic, oxidative, and mechanical stress. These stressors activate biochemical messengers, which in turn activate various signaling pathways that regulate gene expression and adaptive responses. Historically, antioxidant supplements, nonsteroidal anti-inflammatory drugs, and cryotherapy have been favored to attenuate or counteract exercise-induced oxidative stress and inflammation. However, reactive oxygen species and inflammatory mediators are key signaling molecules in muscle, and such strategies may mitigate adaptations to exercise. Conversely, withholding dietary carbohydrate and restricting muscle blood flow during exercise may augment adaptations to exercise. In this review article, we combine, integrate, and apply knowledge about the fundamental mechanisms of exercise adaptation. We also critically evaluate the rationale for using interventions that target these mechanisms under the overarching concept of hormesis. There is currently insufficient evidence to establish whether these treatments exert dose-dependent effects on muscle adaptation. However, there appears to be some dissociation between the biochemical/molecular effects and functional/performance outcomes of some of these treatments. Although several of these treatments influence common kinases, transcription factors, and proteins, it remains to be determined if these interventions complement or negate each other, and whether such effects are strong enough to influence adaptations to exercise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context and objective: The massive production of reactive oxygen species by neutrophils during inflammation may cause damage to tissues. Flavonoids act as antioxidants and have anti-inflammatory effects. In this study, liposomes loaded with these compounds were evaluated as potential antioxidant carriers, in attempt to overcome their poor solubility and stability. Materials and methods: Liposomes containing quercetin, myricetin, kaempferol or galangin were prepared by the ethanol injection method and analyzed as inhibitors of immune complex (IC) and phorbol ester-stimulated neutrophil oxidative metabolism by luminol (CLlum) and lucigenin-enhanced (CLluc) chemiluminescence (CL) assays. The mechanisms involved this activity of liposomal flavonoids, such as cytotoxicity and superoxide anion scavenging capacity, and their effect on phagocytosis of ICs were also investigated. Results and discussion: The results showed that the inhibitory effect of liposomal flavonoids on CLlum and CLluc is inversely related to the number of hydroxyl groups in the flavonoid B ring. Moreover, phagocytosis of liposomes by neutrophils does not seem to necessarily promote such activity, as the liposomal flavonoids are also able to reduce CL when the cells are pretreated with cytochalasin B. Under assessed conditions, the antioxidant liposomes are not toxic to the human neutrophils and do not interfere with IC-induced phagocytosis. Conclusion: The studied liposomes can be suitable carriers of flavonoids and be an alternative for the treatment of diseases in which a massive oxidative metabolism of neutrophils is involved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of a moderate electrical stimulation on superoxide and nitric oxide production by primary cultured skeletal muscle cells were evaluated. The involvement of the main sites of these reactive species production and the relationship between superoxide and nitric oxide production were also examined. Production of superoxide was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. Electrical stimulation increased superoxide production after 1?h incubation. A xanthine oxidase inhibitor caused a partial decrease of superoxide generation and a significant amount of mitochondria-derived superoxide was also observed. Nitric oxide production was assessed by nitrite measurement and by using 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Using both methods an increased production of nitric oxide was obtained after electrical stimulation, which was also able to induce an increase of iNOS content and NF-?B activation. The participation of superoxide in nitric oxide production was investigated by incubating cells with DAF-2-DA in the presence or absence of electrical stimulation, a superoxide generator system (xanthinexanthine oxidase), a mixture of NOS inhibitors and SOD-PEG. Our data show that the induction of muscle contraction by a moderate electrical stimulation protocol led to an increased nitric oxide production that can be controlled by superoxide generation. The cross talk between these reactive species likely plays a role in exercise-induced maintenance and adaptation by regulating muscular glucose metabolism, force of contraction, fatigue, and antioxidant systems activities. J. Cell. Physiol. 227: 25112518, 2012. (c) 2011 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die AMPK ist ein ubiquitär exprimiertes, heterotrimeres Enzym, das bei Energiemangel das Überleben der Zelle sichert. Um diese Funktion ausüben zu können fungiert die AMPK als sogenannter „Energie-Sensor“, der durch steigende AMP Mengen aktiviert wird. In diesem Zustand werden ATP verbrauchende Reaktionen inhibiert und gleichzeitig ATP generierende Vorgänge induziert. Im vaskulären System konnte gezeigt werden, dass die endotheliale NOSynthase durch die AMPK aktiviert, die Angiogenese stimuliert, die Endothelzellapoptose und das Wachstum von Gefäßmuskelzellen inhibiert wird. All diese Prozesse sind fundamental in der Entwicklung von kardiovaskulären Krankheiten, was auf eine protektive Funktion der AMPK im vaskulären System hindeutet. In der vorliegenden Arbeit sollten die Effekte der in vivo Modulation der AMPK Aktivität auf Endothelfunktion, oxidativen Stress und Inflammation untersucht werden. Dazu wurden zwei unterschiedliche Mausmodelle genutzt: Einerseits wurde die AMPK Aktivität durch den pharmakologischen AMPK-Aktivator AICAR stimuliert und andererseits die vaskulär vorherrschende AMPK-Isoform durch knock out ausgeschaltet. Zur Induktion von oxidativem Stress wurde ein bereits charakterisiertes Angiotensin II-Modell angewandt. Zur Untersuchung gehörten neben den Superoxid-Messungen auch die Bestimmung der Stickstoffmonoxid-Mengen in Serum und Aortengewebe, die Relaxationsmessungen in isometrischen Tonusstudien sowie HPLC-basierte Assays. Es konnte gezeigt werden, dass durch die Aktivierung der AMPK mittels AICAR die Angiotensin II induzierte Endotheldysfunktion, der oxidative Stress und auch die vaskuläre Inflammation verbessert werden konnte. Weiterhin zeigte sich dass der knock out der vaskulären Isoform (α1) im Angiotensin II Modell eine signifikant verstärkte Endotheldysfunktion, oxidativen Stress und Inflammation nach sich zog. Anhand der erhobenen Daten konnte die NADPH-Oxidase als Hauptquelle des Angiotensin II induzierten oxidativen Stresses identifiziert werden, wobei sich diese Quelle als AMPK sensitiv erwies. Durch die Aktivierung konnte die Aktivität der NADPH-Oxidase verringert und durch die α1AMPK Defizienz signifikant erhöht werden. Auch die mitochondriale Superoxidproduktion konnte durch die Modulation der AMPK Aktivität beeinflusst werden. Die vaskuläre Inflammation, die anhand der Surrogaten VCAM-1, COX-2 und iNOS untersucht wurde, konnte durch Aktivierung der AMPK verringert werden, der knock out der α1AMPK führte so einer sehr starken Expressionssteigerung der induzierbaren NO-Synthase, was in einem starken Anstieg der NO-Produktion und somit der Peroxynitritbildung resultierte.Die dargestellten Daten deuten stark auf eine protektive Funktion der AMPK im vaskulären System hin und sollte als therapeutisches Ziel, nicht nur in Bezug auf diabetische Patienten, in Betracht gezogen werden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the current study perfusions of an isolated cotyledon of term placenta using standard medium were compared to medium containing xanthine plus xanthine oxidase (X+XO), which generates reactive oxygen species (ROS). A time-dependant increase in the levels of different cytokines (TNF-alpha, IL-1ss, IL-6, IL-8 and IL-10) was observed between 1 and 7h with more than 90% of the total recovered from the maternal compartment with no significant difference between the 2 groups. For 8-iso-PGF2alpha 90% of the total was found in the fetal compartment and a significantly higher total release was seen in the X+XO group. Microparticles (MPs) isolated from the maternal circuit were identified by flow cytometry as trophoblastic sheddings, whereas MPs from the fetal circuit were predominantly derived from endothelial cells. More than 90% of the total of MPs was found in the maternal circuit. The absolute amount of the total as well as the maternal fraction were significantly higher in the X+XO group. Immunohistochemistry (IHC) of the perfused tissue revealed staining for IL-1beta of villous stroma cells, which became clearly more pronounced in experiments with X+XO. Western blot of tissue homogenate revealed 2 isoforms of IL-1beta at 17 and 31kD. In X+XO experiments there was a tendency for increased expression of antioxidant enzymes in the tissue. Western blot of MPs from the maternal circuit showed increased expression of antioxidant enzymes in the X+XO group and for IL-1beta only the 17kD band was detected. In vitro reperfusion of human placental tissue results in mild tissue injury suggestive of oxidative stress. In view of the increased generation of ROS in perfused tissue with further increase under the influence of X+XO, the overall manifestation of oxidative stress remained rather mild. Preservation of antioxidant capacity of human placental tissue could be a sign of integrity of structure and function being maintained in vitro by dual perfusion of an isolated cotyledon. The observed changes resemble findings seen in placentae from preeclampsia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasminogen activator inhibitors (PAIs) play critical roles in regulating cellular invasion and fibrinolysis. An increase in the ratio of PAI-1/PAI-2 in placenta and maternal serum is suggested to result in excessive intervillous fibrin deposition and placental infarction in pregnancies complicated by preeclampsia (PE) and intrauterine growth restriction (IUGR). In the current study we used dual (maternal and fetal) perfusion of human term placentas to examine the release of PAIs to the intervillous space. ELISA revealed a significant time-dependent increase in total PAI-1 levels in maternal perfusate (MP) between 1 and 7h of perfusion. Conversely, PAI-2 levels decreased resulting in a 3-fold increase in the PAI-1/PAI-2 ratio in MP. Levels of PAI-1, but not PAI-2, in placental tissue extracts increased during perfusion. In perfusions carried out with xanthine and xanthine oxidase (X + XO), compounds used to generate reactive oxygen species (ROS), no time-dependent increase in total PAI-1 levels was observed. In addition, X + XO treatment promoted a 3-fold reduction in active PAI-1 levels in MP, indicating that ROS decrease PAI-1 release to MP. The finding of a time-dependent change in patterns of PAI expression and response to ROS indicates the utility of dual perfusion as a model to dissect mechanism(s) promoting aberrant fibrinolysis in pregnancies complicated by PE and IUGR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since 3-hydroxyanthranilic acid (3HAA), an oxidation product of tryptophan metabolism, is a powerful radical scavenger [Christen, S., Peterhans, E., ; Stocker, R. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 2506], its reaction with peroxyl radicals was investigated further. Exposure to aqueous peroxyl radicals generated at constant rate under air from the thermolabile radical initiator 2,2'-azobis[2-amid-inopropane] hydrochloride (AAPH) resulted in rapid consumption of 3HAA with initial accumulation of its cyclic dimer, cinnabarinic acid (CA). The initial rate of formation of the phenoxazinone CA accounted for approximately 75% of the initial rate of oxidation of 3HAA, taking into account that 2 mol of 3HAA are required to form 1 mol of CA. Consumption of 3HAA under anaerobic conditions (where alkyl radicals are produced from AAPH) was considerably slower and did not result in detectable formation of CA. Addition of superoxide dismutase enhanced autoxidation of 3HAA as well as the initial rates of peroxyl radical-induced oxidation of 3HAA and formation of CA by approximately 40-50%, whereas inclusion of xanthine/xanthine oxidase decreased the rate of oxidation of 3HAA by approximately 50% and inhibited formation of CA almost completely, suggesting that superoxide anion radical (O2.-) was formed and reacted with reaction intermediate(s) to curtail formation of CA. Formation of CA was also observed when 3HAA was added to performed compound I of horseradish peroxidase (HRPO) or catalytic amounts of either HRPO, myeloperoxidase, or bovine liver catalase together with glucose/glucose oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The antioxidant properties of tryptophan and some of its oxidative metabolites were examined by measuring how efficiently they inhibited peroxyl radical-mediated oxidation of phosphatidylcholine liposomes and B-phycoerythrin. Low micromolar concentrations of 5-hydroxytryptophan, 3-hydroxykynurenine, xanthurenic acid, or 3-hydroxyanthranilic acid, but not their corresponding nonhydroxylated metabolic precursors, scavenged peroxyl radicals with high efficiency. In particular, 3-hydroxykynurenine and 3-hydroxyanthranilic acid protected B-phycoerythrin from peroxyl radical-mediated oxidative damage more effectively than equimolar amounts of either ascorbate or Trolox (a water-soluble analog of vitamin E). Enzyme activities involved or related to oxidative tryptophan metabolism, as well as endogenous concentrations of tryptophan and its metabolites, were determined within tissues of mice suffering from acute viral pneumonia. Infection resulted in a 100-fold induction of pulmonary indoleamine 2,3-dioxygenase (EC 1.13.11.17) as reported [Yoshida, R., Urade, Y., Tokuda, M. ; Hayaishi, O. (1979) Proc. Natl. Acad. Sci. USA 76, 4084-4086]. This was accompanied by a 16- and 3-fold increase in the levels of lung kynurenine and 3-hydroxykynurenine, respectively. In contrast, endogenous concentrations of tryptophan and xanthurenic acid did not increase and 3-hydroxyanthranilic acid could not be detected. The activity of the superoxide anion (O2-.)-producing enzyme xanthine oxidase increased 3.5-fold during infection while that of the O2-.-removing superoxide dismutase decreased to 50% of control levels. These results plus the known requirement of indoleamine 2,3-dioxygenase for superoxide anion for catalytic activity suggest that viral pneumonia is accompanied by oxidative stress and that induction of indoleamine 2,3-dioxygenase may represent a local antioxidant defence against this and possibly other types of inflammatory diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Daunorubicin (DNR) is an anthracycline antibiotic used as a cancer chemotherapeutic agent. However, it causes mammary adenocarcinomas in female Sprague-Dawley (SD) rats. Vitamin E (E) has been found to reduce DNR carcinogenicity. I investigated the mechanism of DNR carcinogenicity and its interaction with E in SD rats by studying DNR-DNA adduct formation and the influence of E status on DNR clearance and free radical producing and detoxifying enzymes.^ The hypothesis was that DNR exerts its tumorigenic effect via free radicals generated during redox cycling and production of reactive intermediates capable of forming DNA adducts. E was postulated to act as a protective agent through a combination of its antioxidant property, modulation of drug clearance and levels of free radical producing and detoxifying enzymes.^ DNA adduct formation was measured by the nuclease P1 $\sp{32}$P-post labeling assay. In vitro, DNR was activated by rat liver microsomes and either NADPH or cumene hydrogen peroxide (CuOOH). Rat liver DNA incubated with this mixture formed two adducts when the cofactor was NADPH and three adducts when CuOOH was used. In vivo, SD rats were treated with i.v. doses of DNR. No detectable DNR-DNA adducts were formed in liver or mammary DNA in vivo, although there was an intensification of endogenous DNA adducts.^ Groups, 1, 2, 3 and 4 of weanling female SD rats were fed 0, 100, 1,000 and 10,000 mg $\alpha$-tocopheryl acetate/kg diet respectively. A comparison of Groups 1 and 4 showed no effect of E status on clearance of 10 mg tritiated DNR/kg body weight over 72 hours. However, liver cleared DNR at a faster rate than mammary epithelial cells (MEC).^ Xanthine oxidase, which catalyzes DNR redox cycling, was significantly decreased in liver and MEC of rats in group 4 compared to groups 1, 2, and 3. Detoxifying enzymes were not dramatically affected by E supplementation. Quinone reductase in MEC was significantly increased in group 4 compared to other groups. Overall, the liver had higher levels of free radical detoxifying enzymes compared to MEC.^ These data support a role of free radicals in DNR carcinogenicity because (1) endogenous DNA adducts formed due to free radical insult are further intensified by DNR treatment in vivo, (2) MEC, the specific target of DNR carcinogenicity, cannot rapidly clear DNR and have a lower free radical detoxifying capability than liver, (3) E supplementation caused lowering of free radical generating potential via xanthine oxidase, and increased DNR detoxification due to elevation of quinone reductase in MEC. ^