901 resultados para Whole Genome Sequences


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most speciation events probably occur gradually, without complete and immediate reproductive isolation, but the full extent of gene flow between diverging species has rarely been characterized on a genome-wide scale. Documenting the extent and timing of admixture between diverging species can clarify the role of geographic isolation in speciation. Here we use new methodology to quantify admixture at different stages of divergence in Heliconius butterflies, based on whole-genome sequences of 31 individuals. Comparisons between sympatric and allopatric populations of H. melpomene, H. cydno, and H. timareta revealed a genome-wide trend of increased shared variation in sympatry, indicative of pervasive interspecific gene flow. Up to 40% of 100-kb genomic windows clustered by geography rather than by species, demonstrating that a very substantial fraction of the genome has been shared between sympatric species. Analyses of genetic variation shared over different time intervals suggested that admixture between these species has continued since early in speciation. Alleles shared between species during recent time intervals displayed higher levels of linkage disequilibrium than those shared over longer time intervals, suggesting that this admixture took place at multiple points during divergence and is probably ongoing. The signal of admixture was significantly reduced around loci controlling divergent wing patterns, as well as throughout the Z chromosome, consistent with strong selection for Müllerian mimicry and with known Z-linked hybrid incompatibility. Overall these results show that species divergence can occur in the face of persistent and genome-wide admixture over long periods of time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observation of adverse drug reactions during drug development can cause closure of the whole programme. However, if association between the genotype and the risk of an adverse event is discovered, then it might suffice to exclude patients of certain genotypes from future recruitment. Various sequential and non-sequential procedures are available to identify an association between the whole genome, or at least a portion of it, and the incidence of adverse events. In this paper we start with a suspected association between the genotype and the risk of an adverse event and suppose that the genetic subgroups with elevated risk can be identified. Our focus is determination of whether the patients identified as being at risk should be excluded from further studies of the drug. We propose using a utility function to? determine the appropriate action, taking into account the relative costs of suffering an adverse reaction and of failing to alleviate the patient's disease. Two illustrative examples are presented, one comparing patients who suffer from an adverse event with contemporary patients who do not, and the other making use of a reference control group. We also illustrate two classification methods, LASSO and CART, for identifying patients at risk, but we stress that any appropriate classification method could be used in conjunction with the proposed utility function. Our emphasis is on determining the action to take rather than on providing definitive evidence of an association. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background A whole-genome genotyping array has previously been developed for Malus using SNP data from 28 Malus genotypes. This array offers the prospect of high throughput genotyping and linkage map development for any given Malus progeny. To test the applicability of the array for mapping in diverse Malus genotypes, we applied the array to the construction of a SNPbased linkage map of an apple rootstock progeny. Results Of the 7,867 Malus SNP markers on the array, 1,823 (23.2 %) were heterozygous in one of the two parents of the progeny, 1,007 (12.8 %) were heterozygous in both parental genotypes, whilst just 2.8 % of the 921 Pyrus SNPs were heterozygous. A linkage map spanning 1,282.2 cM was produced comprising 2,272 SNP markers, 306 SSR markers and the S-locus. The length of the M432 linkage map was increased by 52.7 cM with the addition of the SNP markers, whilst marker density increased from 3.8 cM/marker to 0.5 cM/marker. Just three regions in excess of 10 cM remain where no markers were mapped. We compared the positions of the mapped SNP markers on the M432 map with their predicted positions on the ‘Golden Delicious’ genome sequence. A total of 311 markers (13.7 % of all mapped markers) mapped to positions that conflicted with their predicted positions on the ‘Golden Delicious’ pseudo-chromosomes, indicating the presence of paralogous genomic regions or misassignments of genome sequence contigs during the assembly and anchoring of the genome sequence. Conclusions We incorporated data for the 2,272 SNP markers onto the map of the M432 progeny and have presented the most complete and saturated map of the full 17 linkage groups of M. pumila to date. The data were generated rapidly in a high-throughput semi-automated pipeline, permitting significant savings in time and cost over linkage map construction using microsatellites. The application of the array will permit linkage maps to be developed for QTL analyses in a cost-effective manner, and the identification of SNPs that have been assigned erroneous positions on the ‘Golden Delicious’ reference sequence will assist in the continued improvement of the genome sequence assembly for that variety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a comprehensive protocol for extracting DNA from egg membranes and other internal debris recovered from the interior of blown museum bird eggs. A variety of commercially available DNA extraction methods were found to be applicable. DNA sequencing of polymerase chain reaction (PCR) products for a 176-bp fragment of mitochondrial DNA was successful for most egg samples (> 78%) even though the amount of DNA extracted (mean = 14.71 ± 4.55 ng/µL) was significantly less than that obtained for bird skin samples (mean = 67.88 ± 4.77 ng/µL). For PCR and sequencing of snipe (Gallinago) DNA, we provide eight new primers for the ‘DNA barcode’ region of COI mtDNA. In various combinations, the primers target a range of PCR products sized from 72 bp to the full ‘barcode’ of 751 bp. Not all possible combinations were tested with archive snipe DNA, but we found a significantly better success rate of PCR amplification for a shorter 176-bp target compared with a larger 288-bp fragment (67% vs. 39%). Finally, we explored the feasibility of whole genome amplification (WGA) for extending the use of archive DNA in PCR and sequencing applications. Of two WGA approaches, a PCR-based method was found to be able to amplify whole genomic DNA from archive skins and eggs from museum bird collections. After WGA, significantly more archive egg samples produced visible PCR products on agarose (56.9% before WGA vs. 79.0% after WGA). However, overall sequencing success did not improve significantly (78.8% compared with 83.0%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xylella fastidiosa is the etiologic agent of diseases in a wide range of economically important crops including citrus variegated chlorosis, a major threat to the Brazilian citrus industry. The genomes of several strains of this phytopathogen have been completely sequenced enabling large-scale functional studies. In this work we used whole-genome DNA microarrays to investigate the transcription profile of X. fastidiosa grown in defined media with different glucose concentrations. Our analysis revealed that while transcripts related to fastidian gum production were unaffected, colicin-V-like and fimbria precursors were induced in high glucose medium. Based on these results, we suggest a model for colicin-defense mechanism in X. fastidiosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The buffalo (Bubalus bubalis) not only is a useful source of milk, it also provides meat and works as a natural source of labor and biogas. To establish a project for buffalo genome mapping a 5,000-rad whole genome radiation hybrid panel was constructed for river buffalo and used to build preliminary RH maps from two chromosomes (BBU 3 and BBU10). The preliminary maps contain 66 markers, including coding genes, cattle ESTs and microsatellite loci. The RH maps presented here are the starting point for mapping additional loci, in particular, genes and expressed sequence tags that will allow detailed comparative maps between buffalo, cattle and other species to be constructed. A large quantity of DNA has been prepared from the cell lines forming the RH panel reported here and will be made publicly available to the international community both for the study of chromosome evolution and for the improvement of traits important to the role of buffalo in animal agriculture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The buffalo (Bubalus bubalis) is a source of milk and meat, and also serves as a draft animal. In this study, a 5000-rad whole-genome radiation hybrid (RH) panel for river buffalo was constructed and used to build preliminary RH maps for BBU3 and BBU10 chromosomes. The preliminary maps contain 66 markers, including coding genes, cattle expressed sequence tags (ESTs) and microsatellite loci. The RH maps presented here are the starting point for mapping additional loci that will allow detailed comparative maps between buffalo, cattle and other species whose genomes may be mapped in the future. A large quantity of DNA has been prepared from the cell lines forming the river buffalo RH panel and will be made publicly available to the international community both for the study of chromosome evolution and for the improvement of traits important to the role of buffalo in animal agriculture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xylella fastidiosa is a xylem-dwelling, insect-transmitted, gamma-proteobacterium that causes diseases in many plants, including grapevine, citrus, periwinkle, almond, oleander, and coffee. X. fastidiosa has an unusually broad host range, has an extensive geographical distribution throughout the American continent, and induces diverse disease phenotypes. Previous molecular analyses indicated three distinct groups of X.fastidiosa isolates that were expected to be genetically divergent. Here we report the genome sequence of X. fastidiosa (Temecula strain), isolated from a naturally infected grapevine with Pierce's disease (PD) in a wine-grape-growing region of California. Comparative analyses with a previously sequenced X.fastidiosa strain responsible for citrus variegated chlorosis (CVC) revealed that 98% of the PD X.fastidiosa Temecula genes are shared with the CVC X. fastidiosa strain 9a5c genes. Furthermore, the average amino acid identity of the open reading frames in the strains is 95.7%. Genomic differences are limited to phage-associated chromosomal rearrangements and deletions that also account for the strain-specific genes present in each genome. Genomic islands, one in each genome, were identified, and their presence in other X.fastidiosa strains was analyzed. We conclude that these two organisms have identical metabolic functions and are likely to use a common set of genes in plant colonization and pathogenesis, permitting convergence of functional genomic strategies.