948 resultados para Water Sensitive Urban Design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water quality issues are heavily dependent on land development and management decisions within river and lake catchments or watersheds. Economic benefits of urbanisation may be short‐ lived without cleaner environmental outcomes. However, whole‐of‐catchment thinking is not, as yet, as frequent a consideration in urban planning and development in China as it is in many other countries. Water is predominantly seen as a resource to be ‘owned’ by different jurisdictions and allocated to numerous users, both within a catchment and between catchments. An alternative to this approach is to think of water in the same way as other commodities that must be kept moving through a complex transport system. Water must ultimately arrive at particular destinations in the biosphere, although it travels across a broad landscape and may be held up temporarily at certain places along the way. While water extraction can be heavily controlled, water pollution is far more difficult to regulate. Both have significant impacts on water availability and flows both now and in the future. As Chinese cities strive to improve economic conditions for their citizens, new centres are being rebuilt and environmental valued

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the rapid urbanization progress, water resources protection and water pollution control have become key problems of human environment construction and social sustainable development. Many countries, especially Australia, have mature experiences. Water Sensitive Urban Design (WSUD) is one of the successful strategies that is put forward under this global situation and helps releasing heavy environmental pressure from urbanization. The paper discussed main principles of WSUD and then took Shijiazhuang, Heibei and Yueng, Hunan for examples trying to apply WSUD in river landscape projects in China's new urban area, thus doing contributions to more sustainable water management in new urban areas in China.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water Sensitive Urban Design (WSUD) systems have the potential mitigate the hydrologic disturbance and water quality concerns associated with stormwater runoff from urban development. In the last few years WSUD has been strongly promoted in South East Queensland (SEQ) and new developments are now required to use WSUD systems to manage stormwater runoff. However, there has been limited field evaluation of WSUD systems in SEQ and consequently knowledge of their effectiveness in the field, under storm events, is limited. The objective of this research project was to assess the effectiveness of WSUD systems installed in a residential development, under real storm events. To achieve this objective, a constructed wetland, bioretention swale and a bioretention basin were evaluated for their ability to improve the hydrologic and water quality characteristics of stormwater runoff from urban development. The monitoring focused on storm events, with sophisticated event monitoring stations measuring the inflow and outflow from WSUD systems. Data analysis undertaken confirmed that the constructed wetland, bioretention basin and bioretention swale improved the hydrologic characteristics by reducing peak flow. The bioretention systems, particularly the bioretention basin also reduced the runoff volume and frequency of flow, meeting key objectives of current urban stormwater management. The pollutant loads were reduced by the WSUD systems to above or just below the regional guidelines, showing significant reductions to TSS (70-85%), TN (40-50%) and TP (50%). The load reduction of NOx and PO4 3- by the bioretention basin was poor (<20%), whilst the constructed wetland effectively reduced the load of these pollutants in the outflow by approximately 90%. The primary reason for the load reduction in the wetland was due to a reduction in concentration in the outflow, showing efficient treatment of stormwater by the system. In contrast, the concentration of key pollutants exiting the bioretention basin were higher than the inflow. However, as the volume of stormwater exiting the bioretention basin was significantly lower than the inflow, a load reduction was still achieved. Calibrated MUSIC modelling showed that the bioretention basin, and in particular, the constructed wetland were undersized, with 34% and 62% of stormwater bypassing the treatment zones in the devices. Over the long term, a large proportion of runoff would not receive treatment, considerably reducing the effectiveness of the WSUD systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stormwater has been recognised as one of the main culprits of aquatic ecosystem pollution and as a significant threat to the goal of ecological sustainable development. Water sensitive urban design is one of the key responses to the need to better manage urban stormwater runoff, the objectives of which go beyond rapid and efficient conveyance. Underpinned by the concepts of sustainable urban development, water sensitive urban design has proven to be an efficient and environmentally-friendly approach to urban stormwater management, with the necessary technical know-how and skills already available. However, large-scale implementation of water sensitive urban design is still lacking in Australia due to significant impediments and negative perceptions. Identification of the issues, barriers and drivers that affect sustainability outcomes of urban stormwater management is one of the first steps towards encouraging the wide-scale uptake of water sensitive urban design features which integrate sustainable urban stormwater management. This chapter investigates key water sensitive urban design perceptions, drivers and barriers in order to improve sustainable urban stormwater management efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach that is slowly replacing neoclassical models of economic growth and commodity based industrial activities, knowledge based urban development (KBUD) aims to provide opportunities for citiesw to foster knowledge creation, exchange and innovation, and is based on the concepts of both sustainable urban development and economic prosperity; sustainable uses and protection of natural resources are therefore integral parts of KBUD. As such, stormwater, which has been recognised as one of the main culprits of aquatic ecosystem pollution and as therefore a significant threat to the goal of sustainable urban development, needs to be managed in a manner that produces ecologically sound outcomes. Water sensitive urban design (WSUD) is one of the key responses to the need to better management urban stormwater runoff and supports KBUD by providing an alternative, innovative and effective strategy to traditional stormwater management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water Sensitive Urban Design (WSUD) practices such as wetlands, bioretention systems and swales are widely implemented in Australia’s urban areas for the mitigation of stormwater pollution and to enhance its reuse potential. In-depth research undertaken has confirmed that these systems do not always perform according to design expectations due to a diversity of reasons. To deliver anticipated benefits, it is critical that they are designed in conformity with catchment and rainfall characteristics and pollutant processes. This in turn entails an in-depth understanding of key pollutant processes. This paper presents the outcomes of extensive research investigations on pollutant characterisation and stormwater pollutant processes on urban catchment surfaces. Outcomes from the research studies revealed the complexities in physical and chemical characteristics of pollutants originating from urban catchments which are strongly influenced by rainfall and catchment characteristics. Based on the research outcomes, recommendations are provided to enhance stormwater treatment performance and to enhance its reuse potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stormwater pollution has been recognised as one of the main causes of aquatic ecosystem degradation and poses a significant threat to both the goal of ecological sustainable development as well as human health and wellbeing. In response, water sensitive urban design (WSUD) practices have been put forward as a strategy to mitigate the detrimental impacts of urban stormwater runoff quality and to safeguard ecosystem functions. However, despite studies that support its efficiency in urban stormwater management, the mainstreaming of WSUD remains a significant challenge. This paper proposes that viewing WSUD through the lens of the integrated urban metabolism framework which encourages an interdisciplinary approach and facilitates dialogue through knowledge transfer is a strategy in which the implementation of WSUD can be mainstreamed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a critique of the Water Sensitive Urban Design (WSUD) paradigm by discussing its congruence with an established sustainable design principle called 'whole system design'. It was found that WSUD is congruent with the whole system design approach as a philosophy, but not in practice. Future improvement of WSUD practice may depend on the adoption of a front-loaded, teamwork-based design and planning process that is embedded in the principle of whole system design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stormwater has been recognised as one of the main culprits of aquatic ecosystem pollution and as a significant threat to the goal of ecological sustainable development. Water sensitive urban design is one of the key responses to the need to better manage urban stormwater runoff, the objectives of which go beyond rapid and efficient conveyance. Underpinned by the concepts of sustainable urban development, water sensitive urban design has proven to be an efficient and environmentally-friendly approach to urban stormwater management, with the necessary technical know-how and skills already available. However, large-scale implementation of water sensitive urban design is still lacking in Australia due to significant impediments and negative perceptions. Identification of the issues, barriers and drivers that affect sustainability outcomes of urban stormwater management is one of the first steps towards encouraging the wide-scale uptake of water sensitive urban design features which integrate sustainable urban stormwater management. This chapter investigates key water sensitive urban design perceptions, drivers and barriers in order to improve sustainable urban stormwater management efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background WSUD implementation in the Gold Coast City Council area commenced more than a decade ago. As a result, Council is expected to be in possession of WSUD assets valued at over tens of million dollars. The Gold Coast City Council is responsible for the maintenance and long-term management of these WSUD assets. Any shortcoming in implementation of best WSUD practices can potentially result in substantial liabilities and ineffective expenditure for the Council in addition to reduced efficiencies and outcomes. This highlights the importance of periodic auditing of WSUD implementation. Project scope The overall study entailed the following tasks: * A state-of-the-art literature review of the conceptual hydraulic and water quality treatment principles, current state of knowledge in relation to industry standards, best practice and identification of knowledge gaps in relation to maintenance and management practices and potential barriers to the implementation of WSUD. * Council stakeholder interviews to understand current practical issues in relation to the implementation of WSUD and the process of WSUD application from development application approval to asset management. * Field auditing of selected WSUD systems for condition assessment and identification of possible strengths and weaknesses in implementation. * Review of the Land Development Guidelines in order to identify any gaps and to propose recommendations for improvement. Conclusions Given below is a consolidated summary of the findings of the study undertaken. State-of-the-art literature review Though the conceptual framework for WSUD implementation is well established, the underlying theoretical knowledge underpinning the treatment processes and maintenance regimes and life cycle costing are still not well understood. Essentially, these are the recurring themes in the literature, namely, the inadequate understanding of treatment processes and lack of guidance to ensure specificity of maintenance regimes and life cycle costing of WSUDs. The fundamental barriers to successful WSUD implementation are: * Lack of knowledge transfer – This essentially relates to the lack of appropriate dissemination of research outcomes and the common absence of protocols for knowledge transfer within the same organisation. * Cultural barriers – These relate to social and institutional factors, including institutional inertia and the lack of clear understanding of the benefits. * Fragmented responsibilities – This results from poor administrative integration within local councils in relation to WSUDs. * Technical barriers – These relate to lack of knowledge on operational and maintenance practices which is compounded by model limitations and the lack of long-term quantitative performance evaluation data. * Lack of engineering standards – Despite the availability of numerous guidelines which are non-enforceable and can sometimes be confusing, there is a need for stringent engineering standards. The knowledge gaps in relation to WSUDs are only closing very slowly. Some of the common knowledge gaps identified in recent publications have been recognised almost a decade ago. The key knowledge gaps identified in the published literature are: * lack of knowledge on operational and maintenance practices; * lack of reliable methodology for identifying life cycle issues including costs; * lack of technical knowledge on system performance; * lack of guidance on retrofitting in existing developments. Based on the review of barriers to WSUD implementation and current knowledge gaps, the following were identified as core areas for further investigation: * performance evaluation of WSUD devices to enhance model development and to assess their viability in the context of environmental, economic and social drivers; establishing realistic life cycle costs to strengthen maintenance and asset management practices; * development of guidelines specific to retrofitting in view of the unique challenges posed by existing urban precincts together with guidance to ensure site specificity; establishment of a process for knowledge translation for enhancing currently available best practice guidelines; * identification of drivers and overcoming of barriers in the areas of institutional fragmentation, knowledge gaps and awareness of WSUD practices. GCCC stakeholder interviews Fourteen staff members involved in WSUD systems management in the Gold Coast City Council, representing four Directorates were interviewed using a standard questionnaire. The primary issues identified by the stakeholders were: * standardisation of WSUD terminology; * clear protocols for safeguarding devices during the construction phase; * engagement of all council stakeholders in the WSUD process from the initial phase; * limitations in the Land Development Guidelines; * ensuring public safety through design; * system siting to avoid conflicts with environmental and public use of open space; * provision of adequate access for maintenance; * integration of social and ecosystem issues to ensure long-term viability of systems in relation to both, vandalism and visual recreation; * lack of performance monitoring and inadequacy of the maintenance budget; * lack of technical training for staff involved in WSUD design approvals and maintenance; incentives for developers for acting responsibly in stormwater management. Field auditing of WSUD systems A representative cross section of WSUD systems in the Gold Coast were audited in the field. The following strengths and weaknesses in WSUD implementation were noted: * The implementation of WSUD systems in the field is not consistent. * The concerns raised by the stakeholders during the interviews in relation to WSUD implementation was validated from the observations from the field auditing, particularly in relation to the following: * safeguarding of devices during the construction phase * public safety * accessibility for maintenance * lack of performance monitoring by Council to assess system performance * inadequate maintenance of existing systems to suit site specific requirements. * A treatment train approach is not being consistently adopted. * Most of the systems audited have satisfactorily catered for public safety. Accessibility for maintenance has been satisfactorily catered for in most of the systems that were audited. * Systems are being commissioned prior to construction activities being substantially completed. * The hydraulic design of most systems appears to be satisfactory. * The design intent of the systems is not always clear. Review of Land Development Guidelines The Land Development Guidelines (TDG) was extensively reviewed and the following primary issues were noted in relation to WSUD implementation: * the LDG appears to have been prepared primarily to provide guidance to developers. It is not clear to what extent the guidelines are applicable to Council staff involved in WSUD maintenance and management; * Section 13 is very voluminous and appears to be a compilation of a series of individual documents resulting in difficulties in locating specific information, a lack of integration and duplication of information; * the LDG has been developed with a primary focus on new urban precinct development and the retrofitting of systems in existing developments has not been specifically discussed; * WSUDs are discussed in two different sections in the LDG and it is not clear which section takes precedence as there are inconsistencies between the two sections; there is inconsistent terminology being used; * there is a need for consolidation of information provided in different sections in the LDG; * there are inconsistencies in the design criteria provided; * there is a need for regular updating of the LDG to ensure that the information provided encompasses the state-of-the-art; * there is limited guidance provided for the preparation of maintenance plans and life cycle costing to assist developers in asset handover and to assist Council staff in assessment. * Based on these observations, eleven recommendations have been provided which are discussed below. Additionally, the stakeholder provided the following specific comments during the interviews in relation to the LDG: * lack of flexibility to cover the different stages of the life cycle of the systems; * no differentiation in projects undertaken by developers and Council; * inadequate information with regards to safety issues such as maximum standing water depth, fencing and safety barriers and public access; * lack of detailed design criteria in relation to Crime Prevention through Environmental Design, safety, amenity, environment, surrounding uses and impacts on surroundings; * inadequate information regarding maintenance requirements specific to the assessment and compliance phases; * recommendations for plantings are based primarily on landscape requirements rather than pollutant uptake capability. Recommendations With regards to the Land Development Guidelines, the following specific recommendations are provided: 1. the relevant sections and their extent of applicability to Council should be clearly identified; 2. integration of the different subsections within Section 13 and re-formatting the document for easy reference; 3. the maintenance guidelines provided in Section 13 should be translated to a maintenance manual for guidance of Council staff; 4. should consider extending the Guidelines to specifically encompass retrofitting of WSUD systems to existing urban precincts; 5. Section 3 needs to be revised to be made consistent with Section 13, to ensure priority for WSUD practices in urban precincts and to move away from conventional stormwater drainage design such as kerb and channelling; 6. it would also be good to specify as to which Section takes predominance in relation to stormwater drainage. It is expected that Section 13 would take predominance over the other sections in the LDG; 7. terminology needs to be made consistent to avoid confusion among developers and Council staff. Water Sensitive Urban Design is the term commonly used in Australia for stormwater quality treatment, rather than Stormwater Quality Improvement Devices. This once again underlines the need for ensuring consistency between Section 3 and Section 13; 8. it would also be good if there is a glossary of commonly used terms in relation to WSUD for use by all stakeholders and which should also be reflected in the LDG; 9. consolidation of all WSUD information into one section should be considered together with appropriate indicators in other LDG Sections regarding the availability of WSUD information. Ensuring consistency in the information provided is implied; 10. Section 13 should be updated at regular intervals to ensure the incorporation of the latest in research outcomes and incorporating criteria and guidance based on the state-of-the-art knowledge. The updating could be undertaken, say, in five year cycles. This would help to overcome the current lack of knowledge transfer; 11. the Council should consider commissioning specialised studies to extend the current knowledge base in relation to WSUD maintenance and life cycle costing. Additionally, Recommendation 10 is also applicable in this instance. The following additional recommendations are made based on the state-of-the-art literature review, stakeholder interviews and field auditing of WSUD systems: 1. Performance monitoring of existing systems to assess improvements to water quality, identify modifications and enhancements to improve performance; 2. Appropriate and monitored maintenance during different phases of development of built assets over time is needed to investigate the most appropriate time/phase of development to commission the final WSUD asset. 3. Undertake focussed investigations in the areas of WSUD maintenance and asset management in order to establish more realistic life cycle costs of systems and maintenance schedules; 4. the engagement of all relevant Council stakeholders from the initial stage of concept planning through to asset handover, and ongoing monitoring. This close engagement of internal stakeholders will assist in building a greater understanding of responsibilities and contribute to overcoming constraints imposed by fragmented responsibilities; 5. the undertaking of a public education program to inform the community of the benefits and ecosystem functions of WSUD systems; 6. technical training to impart state-of-the-art knowledge to staff involved in the approval of designs and maintenance and management of WSUD projects; 7. during the construction phase, it is important to ensure that appropriate measures to safeguard WSUD devices are implemented; 8. risks associated with potential public access to open water zones should be minimised with the application of appropriate safety measures; 9. system siting should ensure that potential conflicts are avoided with respect to public and ecosystem needs; 10. integration of social and ecosystem issues to ensure long-term viability of systems; provide incentives to developers who are proactive and responsible in the area of stormwater management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current approach for protecting the receiving water environment from urban stormwater pollution is the adoption of structural measures commonly referred to as Water Sensitive Urban Design (WSUD). The treatment efficiency of WSUD measures closely depends on the design of the specific treatment units. As stormwater quality can be influenced by rainfall characteristics, the selection of appropriate rainfall events for treatment design is essential to ensure the effectiveness of WSUD systems. Based on extensive field investigation of four urban residential catchments and computer modelling, this paper details a technically robust approach for the selection of rainfall events for stormwater treatment design using a three-component model. The modelling outcomes indicate that selecting smaller average recurrence interval (ARI) events with high intensity-short duration as the threshold for the treatment system design is the most feasible since these events cumulatively generate a major portion of the annual pollutant load compared to the other types of rainfall events, despite producing a relatively smaller runoff volume. This implies that designs based on small and more frequent rainfall events rather than larger rainfall events would be appropriate in the context of efficiency in treatment performance, cost-effectiveness and possible savings in land area needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current approach for protecting the receiving water environment from urban stormwater pollution is the adoption of structural measures commonly referred to as Water Sensitive Urban Design (WSUD). The treatment efficiency of WSUD measures closely depends on the design of the specific treatment units. As stormwater quality is influenced by rainfall characteristics, the selection of appropriate rainfall events for treatment design is essential to ensure the effectiveness of WSUD systems. Based on extensive field investigations in four urban residential catchments based at Gold Coast, Australia, and computer modelling, this paper details a technically robust approach for the selection of rainfall events for stormwater treatment design using a three-component model. The modelling results confirmed that high intensity-short duration events produce 58.0% of TS load while they only generated 29.1% of total runoff volume. Additionally, rainfall events smaller than 6-month average recurrence interval (ARI) generates a greater cumulative runoff volume (68.4% of the total annual runoff volume) and TS load (68.6% of the TS load exported) than the rainfall events larger than 6-month ARI. The results suggest that for the study catchments, stormwater treatment design could be based on the rainfall which had a mean value of 31 mm/h average intensity and 0.4 h duration. These outcomes also confirmed that selecting smaller ARI rainfall events with high intensity-short duration as the threshold for treatment system design is the most feasible approach since these events cumulatively generate a major portion of the annual pollutant load compared to the other types of events, despite producing a relatively smaller runoff volume. This implies that designs based on small and more frequent rainfall events rather than larger rainfall events would be appropriate in the context of efficiency in treatment performance, cost-effectiveness and possible savings in land area needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent decades, a number of sustainable strategies and polices have been created to protect and preserve our water environments from the impacts of growing communities. The Australian approach, Water Sensitive Urban Design (WSUD), defined as the integration of urban planning and design with the urban water cycle management, has made considerable advances on design guidelines since 2000. WSUD stormwater management systems (e.g. wetlands, bioretentions, porous pavement etc), also known as Best Management Practices (BMPs) or Low Impact Development (LID), are slowly gaining popularity across Australia, the USA and Europe. There have also been significant improvements in how to model the performance of the WSUD technologies (e.g. MUSIC software). However, the implementation issues of these WSUD practices are mainly related to ongoing institutional capacity. Some of the key problems are associated with a limited awareness of urban planners and designers; in general, they have very little knowledge of these systems and their benefits to the urban environments. At the same time, hydrological engineers should have a better understanding of building codes and master plans. The land use regulations are equally as important as the physical site conditions for determining opportunities and constraints for implementing WSUD techniques. There is a need for procedures that can make a better linkage between urban planners and WSUD engineering practices. Thus, this paper aims to present the development of a general framework for incorporating WSUD technologies into the site planning process. The study was applied to lot-scale in the Melbourne region, Australia. Results show the potential space available for fitting WSUD elements, according to building requirements and different types of housing densities. © 2011 WIT Press.