970 resultados para Water Distribution Networks Infrastructure Health


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The weighted-least-squares method based on the Gauss-Newton minimization technique is used for parameter estimation in water distribution networks. The parameters considered are: element resistances (single and/or group resistances, Hazen-Williams coefficients, pump specifications) and consumptions (for single or multiple loading conditions). The measurements considered are: nodal pressure heads, pipe flows, head loss in pipes, and consumptions/inflows. An important feature of the study is a detailed consideration of the influence of different choice of weights on parameter estimation, for error-free data, noisy data, and noisy data which include bad data. The method is applied to three different networks including a real-life problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water service providers (WSPs) in the UK have statutory obligations to supply drinking water to all customers that complies with increasingly stringent water quality regulations and minimum flow and pressure criteria. At the same time, the industry is required by regulators and investors to demonstrate increasing operational efficiency and to meet a wide range of performance criteria that are expected to improve year-on-year. Most WSPs have an ideal for improving the operation of their water supply systems based on increased knowledge and understanding of their assets and a shift to proactive management followed by steadily increasing degrees of system monitoring, automation and optimisation. The fundamental mission is, however, to ensure security of supply, with no interruptions and water quality of the highest standard at the tap. Unfortunately, advanced technologies required to fully understand, manage and automate water supply system operation either do not yet exist, are only partially evolved, or have not yet been reliably proven for live water distribution systems. It is this deficiency that the project NEPTUNE seeks to address by carrying out research into 3 main areas; these are: data and knowledge management; pressure management (including energy management); and the associated complex decision support systems on which to base interventions. The 3-year project started in April of 2007 and has already resulted in a number of research findings under the three main research priority areas (RPA). The paper summarises in greater detail the overall project objectives, the RPA activities and the areas of research innovation that are being undertaken in this major, UK collaborative study. Copyright 2009 ASCE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reducing the energy consumption of water distribution networks has never had more significance. The greatest energy savings can be obtained by carefully scheduling the operations of pumps. Schedules can be defined either implicitly, in terms of other elements of the network such as tank levels, or explicitly by specifying the time during which each pump is on/off. The traditional representation of explicit schedules is a string of binary values with each bit representing pump on/off status during a particular time interval. In this paper, we formally define and analyze two new explicit representations based on time-controlled triggers, where the maximum number of pump switches is established beforehand and the schedule may contain less switches than the maximum. In these representations, a pump schedule is divided into a series of integers with each integer representing the number of hours for which a pump is active/inactive. This reduces the number of potential schedules compared to the binary representation, and allows the algorithm to operate on the feasible region of the search space. We propose evolutionary operators for these two new representations. The new representations and their corresponding operations are compared with the two most-used representations in pump scheduling, namely, binary representation and level-controlled triggers. A detailed statistical analysis of the results indicates which parameters have the greatest effect on the performance of evolutionary algorithms. The empirical results show that an evolutionary algorithm using the proposed representations improves over the results obtained by a recent state-of-the-art Hybrid Genetic Algorithm for pump scheduling using level-controlled triggers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Demands are one of the most uncertain parameters in a water distribution network model. A good calibration of the model demands leads to better solutions when using the model for any purpose. A demand pattern calibration methodology that uses a priori information has been developed for calibrating the behaviour of demand groups. Generally, the behaviours of demands in cities are mixed all over the network, contrary to smaller villages where demands are clearly sectorised in residential neighbourhoods, commercial zones and industrial sectors. Demand pattern calibration has a final use for leakage detection and isolation. Detecting a leakage in a pattern that covers nodes spread all over the network makes the isolation unfeasible. Besides, demands in the same zone may be more similar due to the common pressure of the area rather than for the type of contract. For this reason, the demand pattern calibration methodology is applied to a real network with synthetic non-geographic demands for calibrating geographic demand patterns. The results are compared with a previous work where the calibrated patterns were also non-geographic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the service life of water supply network (WSN) growth, the growing phenomenon of aging pipe network has become exceedingly serious. As urban water supply network is hidden underground asset, it is difficult for monitoring staff to make a direct classification towards the faults of pipe network by means of the modern detecting technology. In this paper, based on the basic property data (e.g. diameter, material, pressure, distance to pump, distance to tank, load, etc.) of water supply network, decision tree algorithm (C4.5) has been carried out to classify the specific situation of water supply pipeline. Part of the historical data was used to establish a decision tree classification model, and the remaining historical data was used to validate this established model. Adopting statistical methods were used to access the decision tree model including basic statistical method, Receiver Operating Characteristic (ROC) and Recall-Precision Curves (RPC). These methods has been successfully used to assess the accuracy of this established classification model of water pipe network. The purpose of classification model was to classify the specific condition of water pipe network. It is important to maintain the pipeline according to the classification results including asset unserviceable (AU), near perfect condition (NPC) and serious deterioration (SD). Finally, this research focused on pipe classification which plays a significant role in maintaining water supply networks in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drinking water distribution networks risk exposure to malicious or accidental contamination. Several levels of responses are conceivable. One of them consists to install a sensor network to monitor the system on real time. Once a contamination has been detected, this is also important to take appropriate counter-measures. In the SMaRT-OnlineWDN project, this relies on modeling to predict both hydraulics and water quality. An online model use makes identification of the contaminant source and simulation of the contaminated area possible. The objective of this paper is to present SMaRT-OnlineWDN experience and research results for hydraulic state estimation with sampling frequency of few minutes. A least squares problem with bound constraints is formulated to adjust demand class coefficient to best fit the observed values at a given time. The criterion is a Huber function to limit the influence of outliers. A Tikhonov regularization is introduced for consideration of prior information on the parameter vector. Then the Levenberg-Marquardt algorithm is applied that use derivative information for limiting the number of iterations. Confidence intervals for the state prediction are also given. The results are presented and discussed on real networks in France and Germany.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An underwater gas pipeline is the portion of the pipeline that crosses a river beneath its bottom. Underwater gas pipelines are subject to increasing dangers as time goes by. An accident at an underwater gas pipeline can lead to technological and environmental disaster on the scale of an entire region. Therefore, timely troubleshooting of all underwater gas pipelines in order to prevent any potential accidents will remain a pressing task for the industry. The most important aspect of resolving this challenge is the quality of the automated system in question. Now the industry doesn't have any automated system that fully meets the needs of the experts working in the field maintaining underwater gas pipelines. Principle Aim of this Research: This work aims to develop a new system of automated monitoring which would simplify the process of evaluating the technical condition and decision making on planning and preventive maintenance and repair work on the underwater gas pipeline. Objectives: Creation a shared model for a new, automated system via IDEF3; Development of a new database system which would store all information about underwater gas pipelines; Development a new application that works with database servers, and provides an explanation of the results obtained from the server; Calculation of the values MTBF for specified pipelines based on quantitative data obtained from tests of this system. Conclusion: The new, automated system PodvodGazExpert has been developed for timely and qualitative determination of the physical conditions of underwater gas pipeline; The basis of the mathematical analysis of this new, automated system uses principal component analysis method; The process of determining the physical condition of an underwater gas pipeline with this new, automated system increases the MTBF by a factor of 8.18 above the existing system used today in the industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow measurement data at the district meter area (DMA) level has the potential for burst detection in the water distribution systems. This work investigates using a polynomial function fitted to the historic flow measurements based on a weighted least-squares method for automatic burst detection in the U.K. water distribution networks. This approach, when used in conjunction with an expectationmaximization (EM) algorithm, can automatically select useful data from the historic flow measurements, which may contain normal and abnormal operating conditions in the distribution network, e.g., water burst. Thus, the model can estimate the normal water flow (nonburst condition), and hence the burst size on the water distribution system can be calculated from the difference between the measured flow and the estimated flow. The distinguishing feature of this method is that the burst detection is fully unsupervised, and the burst events that have occurred in the historic data do not affect the procedure and bias the burst detection algorithm. Experimental validation of the method has been carried out using a series of flushing events that simulate burst conditions to confirm that the simulated burst sizes are capable of being estimated correctly. This method was also applied to eight DMAs with known real burst events, and the results of burst detections are shown to relate to the water company's records of pipeline reparation work. © 2014 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water distribution systems are important for life saving facilities especially in the recovery after earthquakes. In this paper, a framework is discussed about seismic serviceability of water systems that includes the fragility evaluation of water sources of water distribution networks. Also, a case study is brought about the performance of a water system under different levels of seismic hazard. The seismic serviceability of a water supply system provided by EPANET is evaluated under various levels of seismic hazard. Basically, the assessment process is based on hydraulic analysis and Monte Carlo simulations, implemented with empirical fragility data provided by the American Lifeline Alliance (ALA, 2001) for both pipelines and water facilities. Represented by the Seismic Serviceability Index (Cornell University, 2008), the serviceability of the water distribution system is evaluated under each level of earthquakes with return periods of 72 years, 475 years, and 2475 years. The system serviceability under levels of earthquake hazard are compared with and without considering the seismic fragility of the water source. The results show that the seismic serviceability of the water system decreases with the growing of the return period of seismic hazard, and after considering the seismic fragility of the water source, the seismic serviceability decreases. The results reveal the importance of considering the seismic fragility of water sources, and the growing dependence of the system performance of water system on the seismic resilience of water source under severe earthquakes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the formulation of a Multi-objective Pipe Smoothing Genetic Algorithm (MOPSGA) and its application to the least cost water distribution network design problem. Evolutionary Algorithms have been widely utilised for the optimisation of both theoretical and real-world non-linear optimisation problems, including water system design and maintenance problems. In this work we present a pipe smoothing based approach to the creation and mutation of chromosomes which utilises engineering expertise with the view to increasing the performance of the algorithm whilst promoting engineering feasibility within the population of solutions. MOPSGA is based upon the standard Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and incorporates a modified population initialiser and mutation operator which directly targets elements of a network with the aim to increase network smoothness (in terms of progression from one diameter to the next) using network element awareness and an elementary heuristic. The pipe smoothing heuristic used in this algorithm is based upon a fundamental principle employed by water system engineers when designing water distribution pipe networks where the diameter of any pipe is never greater than the sum of the diameters of the pipes directly upstream resulting in the transition from large to small diameters from source to the extremities of the network. MOPSGA is assessed on a number of water distribution network benchmarks from the literature including some real-world based, large scale systems. The performance of MOPSGA is directly compared to that of NSGA-II with regard to solution quality, engineering feasibility (network smoothness) and computational efficiency. MOPSGA is shown to promote both engineering and hydraulic feasibility whilst attaining good infrastructure costs compared to NSGA-II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than eighteen percent of the world’s population lives without reliable access to clean water, forced to walk long distances to get small amounts of contaminated surface water. Carrying heavy loads of water long distances and ingesting contaminated water can lead to long-term health problems and even death. These problems affect the most vulnerable populations, women, children, and the elderly, more than anyone else. Water access is one of the most pressing issues in development today. Boajibu, a small village in Sierra Leone, where the author served in Peace Corps for two years, lacks access to clean water. Construction of a water distribution system was halted when a civil war broke out in 1992 and has not been continued since. The community currently relies on hand-dug and borehole wells that can become dirty during the dry season, which forces people to drink contaminated water or to travel a far distance to collect clean water. This report is intended to provide a design the system as it was meant to be built. The water system design was completed based on the taps present, interviews with local community leaders, local surveying, and points taken with a GPS. The design is a gravity-fed branched water system, supplied by a natural spring on a hill adjacent to Boajibu. The system’s source is a natural spring on a hill above Boajibu, but the flow rate of the spring is unknown. There has to be enough flow from the spring over a 24-hour period to meet the demands of the users on a daily basis, or what is called providing continuous flow. If the spring has less than this amount of flow, the system must provide intermittent flow, flow that is restricted to a few hours a day. A minimum flow rate of 2.1 liters per second was found to be necessary to provide continuous flow to the users of Boajibu. If this flow is not met, intermittent flow can be provided to the users. In order to aid the construction of a distribution system in the absence of someone with formal engineering training, a table was created detailing water storage tank sizing based on possible source flow rates. A builder can interpolate using the source flow rate found to get the tank size from the table. However, any flow rate below 2.1 liters per second cannot be used in the table. In this case, the builder should size the tank such that it can take in the water that will be supplied overnight, as all the water will be drained during the day because the users will demand more than the spring can supply through the night. In the developing world, there is often a problem collecting enough money to fund large infrastructure projects, such as a water distribution system. Often there is only enough money to add only one or two loops to a water distribution system. It is helpful to know where these one or two loops can be most effectively placed in the system. Various possible loops were designated for the Boajibu water distribution system and the Adaptive Greedy Heuristic Loop Addition Selection Algorithm (AGHLASA) was used to rank the effectiveness of the possible loops to construct. Loop 1 which was furthest upstream was selected because it benefitted the most people for the least cost. While loops which were further downstream were found to be less effective because they would benefit fewer people. Further studies should be conducted on the water use habits of the people of Boajibu to more accurately predict the demands that will be placed on the system. Further population surveying should also be conducted to predict population change over time so that the appropriate capacity can be built into the system to accommodate future growth. The flow at the spring should be measured using a V-notch weir and the system adjusted accordingly. Future studies can be completed adjusting the loop ranking method so that two users who may be using the water system for different lengths of time are not counted the same and vulnerable users are weighted more heavily than more robust users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determination of the placement and rating of transformers and feeders are the main objective of the basic distribution network planning. The bus voltage and the feeder current are two constraints which should be maintained within their standard range. The distribution network planning is hardened when the planning area is located far from the sources of power generation and the infrastructure. This is mainly as a consequence of the voltage drop, line loss and system reliability. Long distance to supply loads causes a significant amount of voltage drop across the distribution lines. Capacitors and Voltage Regulators (VRs) can be installed to decrease the voltage drop. This long distance also increases the probability of occurrence of a failure. This high probability leads the network reliability to be low. Cross-Connections (CC) and Distributed Generators (DGs) are devices which can be employed for improving system reliability. Another main factor which should be considered in planning of distribution networks (in both rural and urban areas) is load growth. For supporting this factor, transformers and feeders are conventionally upgraded which applies a large cost. Installation of DGs and capacitors in a distribution network can alleviate this issue while the other benefits are gained. In this research, a comprehensive planning is presented for the distribution networks. Since the distribution network is composed of low and medium voltage networks, both are included in this procedure. However, the main focus of this research is on the medium voltage network planning. The main objective is to minimize the investment cost, the line loss, and the reliability indices for a study timeframe and to support load growth. The investment cost is related to the distribution network elements such as the transformers, feeders, capacitors, VRs, CCs, and DGs. The voltage drop and the feeder current as the constraints are maintained within their standard range. In addition to minimizing the reliability and line loss costs, the planned network should support a continual growth of loads, which is an essential concern in planning distribution networks. In this thesis, a novel segmentation-based strategy is proposed for including this factor. Using this strategy, the computation time is significantly reduced compared with the exhaustive search method as the accuracy is still acceptable. In addition to being applicable for considering the load growth, this strategy is appropriate for inclusion of practical load characteristic (dynamic), as demonstrated in this thesis. The allocation and sizing problem has a discrete nature with several local minima. This highlights the importance of selecting a proper optimization method. Modified discrete particle swarm optimization as a heuristic method is introduced in this research to solve this complex planning problem. Discrete nonlinear programming and genetic algorithm as an analytical and a heuristic method respectively are also applied to this problem to evaluate the proposed optimization method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis documented pathogenic species of nontuberculous mycobacteria in the Brisbane water distribution system. When water and shower aerosol strains were compared with human strains of mycobacteria, the study found that the likelihood of acquiring infection from municipal water was specific for four main species. The method for isolation of mycobacteria from water was refined, followed by sampling from 220 sites across Brisbane. A variety of species (incl 15 pathogens) were identified and genotypically compared to human strains. For M. abscessus and M. lentiflavum, water strains clustered with human strains. Pathogenic strains of M. kansasii were found, though non-pathogenic strains dominated. Waterborne strains of M. fortuitum differed to human strains. Extensive home sampling of 20 patients with NTM disease, supported the theory that the risk of acquiring NTM from water or shower aerosols appears species specific for M. avium, M. kansasii, M. lentiflavum and M. abscessus.