932 resultados para Virtual training


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on a current research project in which virtual reality simulators are being investigated as a means of simulating hazardous Rail work conditions in order to allow train drivers to practice decision-making under stress. When working under high stress conditions train drivers need to move beyond procedural responses into a response activated through their own problem-solving and decision-making skills. This study focuses on the use of stress inoculation training which aims to build driver’s confidence in the use of new decision-making skills by being repeatedly required to respond to hazardous driving conditions. In particular, the study makes use of a train cab driving simulator to reproduce potentially stress inducing real-world scenarios. Initial pilot research has been undertaken in which drivers have experienced the training simulation and subsequently completed surveys on the level of immersion experienced. Concurrently drivers have also participated in a velocity perception experiment designed to objectively measure the fidelity of the virtual training environment. Baseline data, against which decision-making skills post training will be measured, is being gathered via cognitive task analysis designed to identify primary decision requirements for specific rail events. While considerable efforts have been invested in improving Virtual Reality technology, little is known about how to best use this technology for training personnel to respond to workplace conditions in the Rail Industry. To enable the best use of simulators for training in the Rail context the project aims to identify those factors within virtual reality that support required learning outcomes and use this information to design training simulations that reliably and safely train staff in required workplace accident response skills.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The article presents the design process of intelligent virtual human patients that are used for the enhancement of clinical skills. The description covers the development from conceptualization and character creation to technical components and the application in clinical research and training. The aim is to create believable social interactions with virtual agents that help the clinician to develop skills in symptom and ability assessment, diagnosis, interview techniques and interpersonal communication. The virtual patient fulfills the requirements of a standardized patient producing consistent, reliable and valid interactions in portraying symptoms and behaviour related to a specific clinical condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

介绍了一种排爆机器人模拟训练系统.该系统提供了友好的人机交互界面,使操作人员可以进行各种模拟训练,并提高操作水平.重点介绍了该模拟训练系统的体系结构及关键实现技术,包括排爆机器人及其工作环境的建模方法、机器人运动学和动力学简化模型、碰撞检测和技能评定等.通过实验,证明了该模拟训练系统的可行性和有效性.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Urquhart,C., Thomas, R., Spink, S., Fenton, R., Yeoman, A., Lonsdale, R., Armstrong, C., Banwell, L., Ray, K., Coulson, G. & Rowley, J. (2005). Student use of electronic information services in further education. International Journal of Information Management, 25(4), 347-362. Sponsorship: JISC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los Massive Online Open Courses (MOOC) son una modalidad de formación virtual que está ya presente en el panorama educativo actual y que responde a una concepción determinada de e-learning. Las universidades están integrando como parte de su oferta formativa este tipo de formación o, al menos, se está debatiendo si se integra o no. Ante esto, se hace necesario calibrar cuáles deben ser sus características con el fin de configurar un tipo de formación virtual de calidad. Se considera que son necesarios instrumentos que avalen la calidad de los MOOC desde diferentes perspectivas, en este caso la pedagógica, ya que de ello dependerá el éxito y la consolidación de este tipo de e-learning. El objetivo del presente estudio ha sido, pues, validar un cuestionario para la evaluación pedagógica de los MOOC adaptando el cuestionario de evaluación de cursos virtuales (Arias, 2007). Se ha analizado la validez y fiabilidad de dicho cuestionario a través de un análisis factorial de componentes principales con rotación Varimax. Se concluye que bastaría con introducir adaptaciones en la relación de dimensiones propuestas en este cuestionario que tuviera en cuenta las especificidades de los MOOC, ya que estos no pueden analizarse única y exclusivamente desde la óptica general del e-learning anterior a los MOOC. Así, las dimensiones en las cuales se basa dicho cuestionario son: 1) la calidad de la comunicación y los elementos multimedia de los cursos masivos en línea; 2) la coherencia curricular de los cursos y el grado de adaptación al usuario y 3) la calidad de su planificación didáctica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La educación virtual ha instalado una manera diferente de comprender la enseñanza y el aprendizaje. Asimismo, ha venido a modificar los roles de profesores y estudiantes y las formas de acceder al conocimiento. En este contexto, el estudio tiene como objetivo analizar las expectativas de estudiantes universitarios en torno a sus propias capacidades y competencias para participar en cursos abiertos y en línea. Nos aproximamos a estas cuestiones a través de un diseño descriptivo y correlacional con la participación de 115 estudiantes chilenos y 75 españoles. Los análisis psicométricos evidencian una buena consistencia del instrumento confirmando las dimensiones teóricas del instrumento, además de la correlación entre algunos factores y las variables demográficas de los grupos estudiados.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nursing training for an Intensive Care Unit (ICU) is a resource intensive process. High demands are made on staff, students and physical resources. Interactive, 3D computer simulations, known as virtual worlds, are increasingly being used to supplement training regimes in the health sciences; especially in areas such as complex hospital ward processes. Such worlds have been found to be very useful in maximising the utilisation of training resources. Our aim is to design and develop a novel virtual world application for teaching and training Intensive Care nurses in the approach and method for shift handover, to provide an independent, but rigorous approach to teaching these important skills. In this paper we present a virtual world simulator for students to practice key steps in handing over the 24/7 care requirements of intensive care patients during the commencing first hour of a shift. We describe the modelling process to provide a convincing interactive simulation of the handover steps involved. The virtual world provides a practice tool for students to test their analytical skills with scenarios previously provided by simple physical simulations, and live on the job training. Additional educational benefits include facilitation of remote learning, high flexibility in study hours and the automatic recording of a reviewable log from the session. To the best of our knowledge, we believe this is a novel and original application of virtual worlds to an ICU handover process. The major outcome of the work was a virtual world environment for training nurses in the shift handover process, designed and developed for use by postgraduate nurses in training.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conventional training methods for nurses involve many physical factors that place limits on potential class sizes. Alternate training methods with lower physical requirements may support larger class sizes, but given the tactile quality of nurse training, are most appropriately applied to supplement the conventional methods. However, where the importance of physical factors are periphery, such alternate training methods can provide an important way to increase upper class-size limits and therefore the rate of trained nurses entering the important role of critical care. A major issue in ICU training is that the trainee can be released into a real-life intensive care scenario with sub optimal preparation and therefore a level of anxiety for the student concerned, and some risk for the management level nurses, as patient safety is paramount. This lack of preparation places a strain on the allocation of human and non-human resources to teaching, as students require greater levels of supervision. Such issues are a concern to ICU management, as they relate to nursing skill development and patient health outcomes, as nursing training is potentially dangerous for patients who are placed in the care of inexperienced staff. As a solution to this problem, we present a prototype ICU handover training environment that has been developed in a socially interactive virtual world. Nurses in training can connect remotely via the Internet to this environment and engage in collaborative ICU handover training classes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tower crane dismantling is one of the most dangerous activities in the construction industry. Tower crane erection and dismantlement causes 10–12% of the fatalities of all crane accidents. The nature of the task is such that off-the-job training is not practicable, and the knowledge and expertise needed has to be gained on the job. However, virtual trainers such as Microsoft Flight Simulator for airplane pilots and mission rehearsal exercise (MRE) for army personnel have been developed and are known to provide a highly successful means of overcoming the risks involved in such on-the-job learning and clearly have potential in construction situations. This paper describes the newly developed multiuser virtual safety training system (MVSTS) aimed at providing a similar learning environment for those involved in tower crane dismantlement. The proposed training system is developed by modifying an existing game engine. Within the close-to-reality virtual environment, trainees can participate in a virtual dismantling process. During the process, they learn the correct dismantling procedure and working location and to cooperate with other trainees by virtually dismantling the crane. The system allows the trainees to experience the complete procedure in a risk-free environment. A case study is provided to demonstrate how the system works and its practical application. The proposed system was evaluated by interviews with 30 construction experts with different backgrounds, divided into three groups according to their experience and trained by the traditional and virtual methods, respectively. The results indicate that the trainees of the proposed system generally learned better than those using the traditional method. The ratings also indicate that the system generally has great potential as a training platform.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims The Medical Imaging Training Immersive Environment (MITIE) system is a recently developed virtual reality (VR) platform that allows students to practice a range of medical imaging techniques. The aim of this pilot study was to harvest user feedback about the educational value of the application and inform future pedagogical development. This presentation explores the use of this technology for skills training and blurring the boundaries between academic learning and clinical skills training. Background MITIE is a 3D VR environment that allows students to manipulate a patient and radiographic equipment in order to produce a VR-generated image for comparison with a gold standard. As with VR initiatives in other health disciplines (1-6) the software mimics clinical practice as much as possible and uses 3D technology to enhance immersion and realism. The software was developed by the Medical Imaging Course Team at a provider University with funding from a Health Workforce Australia “Simulated Learning Environments” grant. Methods Over 80 students undertaking the Bachelor of Medical Imaging Course were randomised to receive practical experience with either MITIE or radiographic equipment in the medical radiation laboratory. Student feedback about the educational value of the software was collected and performance with an assessed setup was measured for both groups for comparison. Ethical approval for the project was provided by the university ethics panel. Results This presentation provides qualitative analysis of student perceptions relating to satisfaction, usability and educational value as well as comparative quantitative performance data. Students reported high levels of satisfaction and both feedback and assessment results confirmed the application’s significance as a pre-clinical training tool. There was a clear emerging theme that MITIE could be a useful learning tool that students could access to consolidate their clinical learning, either during their academic timetables or their clinical placement. Conclusion Student feedback and performance data indicate that MITIE has a valuable role to play in the clinical skills training for medical imaging students both in the academic and the clinical environment. Future work will establish a framework for an appropriate supporting pedagogy that can cross the boundary between the two environments. This project was possible due to funding made available by Health Workforce Australia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim Simulation forms an increasingly vital component of clinical skills development in a wide range of professional disciplines. Simulation of clinical techniques and equipment is designed to better prepare students for placement by providing an opportunity to learn technical skills in a “safe” academic environment. In radiotherapy training over the last decade or so this has predominantly comprised treatment planning software and small ancillary equipment such as mould room apparatus. Recent virtual reality developments have dramatically changed this approach. Innovative new simulation applications and file processing and interrogation software have helped to fill in the gaps to provide a streamlined virtual workflow solution. This paper outlines the innovations that have enabled this, along with an evaluation of the impact on students and educators. Method Virtual reality software and workflow applications have been developed to enable the following steps of radiation therapy to be simulated in an academic environment: CT scanning using a 3D virtual CT scanner simulation; batch CT duplication; treatment planning; 3D plan evaluation using a virtual linear accelerator; quantitative plan assessment, patient setup with lasers; and image guided radiotherapy software. Results Evaluation of the impact of the virtual reality workflow system highlighted substantial time saving for academic staff as well as positive feedback from students relating to preparation for clinical placements. Students valued practice in the “safe” environment and the opportunity to understand the clinical workflow ahead of clinical department experience. Conclusion Simulation of most of the radiation therapy workflow and tasks is feasible using a raft of virtual reality simulation applications and supporting software. Benefits of this approach include time-saving, embedding of a case-study based approach, increased student confidence, and optimal use of the clinical environment. Ongoing work seeks to determine the impact of simulation on clinical skills.