995 resultados para Vibration exercise


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effectiveness of a short-duration (5-6 min, 3 d·wk) resistive exercise program with (RVE) or without (RE) whole-body vibration in reducing muscle atrophy in the lower limb during prolonged inactivity when compared with that in an inactive control group. METHODS: As part of the second Berlin BedRest Study, 24 male subjects underwent 60 d of head-down tilt bed rest. Using magnetic resonance imaging, muscle volumes of the individual muscles of the lower limb were calculated before and at various intervals during and after bed rest. Pain levels and markers of muscle damage were also evaluated during and after bed rest. Adjustment of P values to guard against false positives was performed via the false discovery rate method. RESULTS: On the "intent-to-treat" analysis, RE reduced atrophy of the medial and lateral gastrocnemius, soleus, vasti, tibialis posterior, flexor hallucis longus, and flexor digitorum longus (P ≤ 0.045 vs control group) and RVE reduced atrophy of the medial and lateral gastrocnemius and tibialis posterior (P ≤ 0.044). Pain intensity reports after bed rest were lower in RE at the foot (P ≤ 0.033) and whole lower limb (P = 0.01) and in RVE at the thigh (P ≤ 0.041), lower leg (P ≤ 0.01), and whole lower limb (P ≤ 0.036). Increases in sarcomere-specific creatine kinase after bed rest were less in RE (P = 0.020) and RVE (P = 0.020). No differences between RE and RVE were observed. CONCLUSIONS: In conclusion, a short-duration RVE or RE can be effective in reducing the effect of prolonged bed rest on lower extremity muscle volume loss during bed rest and muscle damage and pain after bed rest. Copyright © 2014 by the American College of Sports Medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The current study aimed to examine the effectiveness of a resistive vibration exercise countermeasure during prolonged bed-rest in preventing lower-limb muscle atrophy. METHODS: 20 male subjects underwent 56-days of bed-rest and were assigned to either an inactive control, or a countermeasure group which performed high-load resistive exercises (including squats, heel raises and toe raises) with whole-body vibration. Magnetic resonance imaging of the lower-limbs was performed at two-weekly intervals. Volume of individual muscles was calculated. RESULTS: Countermeasure exercise reduced atrophy in the triceps surae and the vastii muscles (F>3.0, p<.025). Atrophy of the peroneals, tibialis posterior and toe flexors was less in the countermeasure-subjects, though statistical evidence for this was weak (F

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bed rest results in marked vascular adaptations, and resistive vibration exercise (RVE) has been shown to be an effective countermeasure. As vibration exercise has practical and logistical limitations, the use of resistive exercise (RES) alone has the preference under specific circumstances. However, it is unknown if RES is sufficient to prevent vascular adaptations to bed rest. Therefore, the purpose of the present study was to examine the impact of RES and RVE on the vascular function and structure of the superficial femoral artery in young men exposed to 60 days of bed rest. Eighteen healthy men (age: 31 +/- 8 yr) were assigned to bed rest and randomly allocated to control, RES, or RVE groups. Exercise was applied 3 times/wk for 5-7 min/session. Resting diameter, blood flow, flow-mediated dilation (FMD), and dilator capacity of the superficial femoral artery were measured using echo-Doppler ultrasound. Bed rest decreased superficial femoral artery diameter and dilator capacity (P < 0.001), which were significantly attenuated in the RVE group (P < 0.01 and P < 0.05, respectively) but not in the RES group (P = 0.202 and P = 0.696, respectively). Bed rest significantly increased FMD (P < 0.001), an effect that was abolished by RVE (P < 0.005) but not RES (P = 0.078). Resting and hyperemic blood flow did not change in any of the groups. Thus, RVE abolished the marked increase in FMD and decrease in baseline diameter and dilator capacity normally associated with prolonged bed rest. However, the stimulus provided by RES alone was insufficient to counteract the vascular adaptations to bed rest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED: During and after prolonged bed rest, changes in bone metabolic markers occur within 3 days. Resistive vibration exercise during bed rest impedes bone loss and restricts increases in bone resorption markers whilst increasing bone formation. INTRODUCTION: To investigate the effectiveness of a resistive vibration exercise (RVE) countermeasure during prolonged bed rest using serum markers of bone metabolism and whole-body dual X-ray absorptiometry (DXA) as endpoints. METHODS: Twenty healthy male subjects underwent 8 weeks of bed rest with 12 months follow-up. Ten subjects performed RVE. Blood drawings and DXA measures were conducted regularly during and after bed rest. RESULTS: Bone resorption increased in the CTRL group with a less severe increase in the RVE group (p = 0.0004). Bone formation markers increased in the RVE group but decreased marginally in the CTRL group (p < 0.0001). At the end of bed rest, the CTRL group showed significant loss in leg bone mass (-1.8(0.9)%, p = 0.042) whereas the RVE group did not (-0.7(0.8)%, p = 0.405) although the difference between the groups was not significant (p = 0.12). CONCLUSIONS: The results suggest the countermeasure restricts increases in bone resorption, increased bone formation, and reduced bone loss during bed rest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand the effects of a resistive vibration exercise (RVE) countermeasure on changes in lumbo-pelvic muscle motor control during prolonged bed-rest, 20 male subjects took part in the Berlin Bed-Rest Study (in 2003-2005) and were randomised to a RVE group or an inactive control group. Surface electromyographic signals recorded from five superficial lumbo-pelvic muscles during a repetitive knee movement task. The task, which required stabilisation of the lumbo-pelvic region, was performed at multiple movement speeds and at multiple time points during and after bed-rest. After excluding effects that could be attributed to increases in subcutaneous fat changes and improvements in movement skill, we found that the RVE intervention ameliorated the generalised increases in activity ratios between movement speeds (p⩽0.012), reductions in lumbo-pelvic extensor and flexor co-contraction (p=0.058) and increases in root-mean-square electromyographic amplitude (p=0.001) of the lumbar erector spinae muscles. Effects of RVE on preventing increases in amplitude-modulation (p=0.23) of the lumbar erector spinae muscles were not significant. Few significant changes in activation-timing were seen. The RVE intervention during bed-rest, with indirect loading of the spine during exercise, was capable of reducing some, but not all, motor control changes in the lumbo-pelvic musculature during and after bed-rest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have tried to find countermeasures against musculoskeletal de-conditioning during bed-rest, but none of them yielded decisive results. We hypothesised that resistive vibration exercise (RVE) might be a suitable training modality. We have therefore carried out a bed-rest study to evaluate its feasibility and efficacy during 56 days of bed-rest. Twenty healthy male volunteers aged 24 to 43 years were recruited and, after medical check-ups, randomised to a non-exercising control (Ctrl) group or a group that performed RVE 11 times per week. Strict bed-rest was controlled by video surveillance. The diet was controlled. RVE was performed in supine position, with a static force component of about twice the body weight and a smaller dynamic force component. RVE comprised four different units (squats, heel raises, toe raises, kicks), each of which lasted 60 - 100 seconds. Pre and post exercise levels of lactate were measured once weekly. Body weight was measured daily on a bed scale. Pain questionnaires were obtained in regular intervals during and after the bed-rest. Vibration frequency was set to 19 Hz at the beginning and progressed to 25.9 Hz (SD 1.9) at the end of the study, suggesting that the dynamic force component increased by 90%. The maximum sustainable exercise time for squat exercise increased from 86 s (SD 21) on day 11 of the BR to 176 s (SD 73) on day 53 (p = 0.006). On the same days, post-exercise lactate levels increased from 6.9 mmol/l (SD2.3) to 9.2 mmol/l (SD 3.5, p = 0.01). On average, body weight was unchanged in both groups during bed-rest, but single individuals in both groups depicted significant weight changes ranging from -10% to + d10% (p < 0.001). Lower limb pain was more frequent during bed-rest in the RVE subjects than in Ctrl (p = 0.035). During early recovery, subjects of both groups suffered from muscle pain to a comparable extent, but foot pain was more common in Ctrl than in RVE (p = 0.013 for plantar pain, p = 0.074 for dorsal foot pain). Our results indicate that RVE is feasible twice daily during bed-rest in young healthy males, provided that one afternoon and one entire day per week are free. Exercise progression, mainly by progression of vibration frequency, yielded increases in maximum sustainable exercise time and blood lactate. In conclusion, RVE as performed in this study, appears to be safe.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

STUDY DESIGN: Randomized controlled trial. OBJECTIVE: Determine the effectiveness a resistive exercise countermeasure with whole-body vibration in relation to lumbo-pelvic muscle and spinal morphology changes during simulated spaceflight (bed-rest). SUMMARY OF BACKGROUND DATA: Spinal lengthening, flattening of the spinal curves, increases in disc size, and muscle atrophy are commonly seen in spaceflight simulation. This may represent a risk for low back injury. Consideration of exercise countermeasures against these changes is critical for success of long-term spaceflight missions. METHODS: Twenty healthy male subjects underwent 8-weeks of bed-rest with 6-months follow-up and were randomly allocated to an inactive control or countermeasure exercise group. Magnetic resonance imaging of the lumbo-pelvic region was conducted at regular time-points during and after bed-rest. Using uniplanar images at L4, cross-sectional areas of the multifidus, lumbar erector spinae, quadratus lumborum, psoas, anterolateral abdominal, and rectus abdominis muscles were measured. Sagittal scans were used to assess lumbar spine morphology (length, sagittal disc area and height, and intervertebral angles). RESULTS: The countermeasure group exhibited less multifidus muscle atrophy (P = 0.024) and its atrophy did not persist long-term as in the control group (up to 3-months; P < 0.006). Spinal lengthening (P = 0.03) and increases in disc area (P = 0.041) were also reduced. Significant partial correlations (P < 0.001) existed between spinal morphology and muscle cross-sectional area changes. CONCLUSION: The resistive vibration exercise countermeasure reduced, but did not entirely prevent, multifidus muscle atrophy and passive spinal tissue deconditioning during bed-rest. Atrophy of the multifidus muscles was persistent long-term in the inactive subjects. Future work could consider closer attention to spinal posture during exercise and optimizing exercise dose.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise (n = 7), resistive exercise only (n = 8), or no exercise (n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups (P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only (P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen (P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES: In order to better understand which training approaches are more effective for preventing bone loss in post-menopausal women with low bone mass, we examined the effect of a nine-month resistive exercise program with either an additional whole body vibration exercise (VIB) or balance training (BAL). METHODS: 68 post-menopausal women with osteopenia were recruited for the study and were randomised to either the VIB or BAL group. Two training sessions per week were performed. 57 subjects completed the study (VIB n=26; BAL n=31). Peripheral quantitative computed tomography (pQCT) measurements of the tibia, fibula, radius and ulna were performed at baseline and at the end of the intervention period at the epiphysis (4% site) and diaphysis (66% site). Analysis was done on an intent-to-treat approach. RESULTS: Significant increases in bone density and strength were seen at a number of measurement sites after the intervention period. No significant differences were seen in the response of the two groups at the lower-leg. CONCLUSIONS: This study provided evidence that a twice weekly resistive exercise program with either additional balance or vibration training could increase bone density at the distal tibia after a nine-month intervention period in post-menopausal women with low bone mass.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exercise at regular intervals is assumed to have a positive effect on immune functions. Conversely, after spaceflight and under simulated weightlessness (e.g., bed rest), immune functions can be suppressed. We aimed to assess the effects of simulated weightlessness (Second Berlin BedRest Study; BBR2-2) on immunological parameters and to investigate the effect of exercise (resistive exercise with and without vibration) on these changes. Twenty-four physically and mentally healthy male volunteers (20-45 years) performed resistive vibration exercise (n=7), resistance exercise without vibration (n=8) or no exercise (n=9) within 60 days of bed rest. Blood samples were taken 2 days before bed rest, on days 19 and 60 of bed rest. Composition of immune cells was analyzed by flow cytometry. Cytokines and neuroendocrine parameters were analyzed by Luminex technology and ELISA/RIA in plasma. General changes over time were identified by paired t-test, and exercise-dependent effects by pairwise repeated measurements (analysis of variance (ANOVA)). With all subjects pooled, the number of granulocytes, natural killer T cells, hematopoietic stem cells and CD45RA and CD25 co-expressing T cells increased and the number of monocytes decreased significantly during the study; the concentration of eotaxin decreased significantly. Different impacts of exercise were seen for lymphocytes, B cells, especially the IgD(+) subpopulation of B cells and the concentrations of IP-10, RANTES and DHEA-S. We conclude that prolonged bed rest significantly impacts immune cell populations and cytokine concentrations. Exercise was able to specifically influence different immunological parameters. In summary, our data fit the hypothesis of immunoprotection by exercise and may point toward even superior effects by resistive vibration exercise.Cellular & Molecular Immunology advance online publication, 10 November 2014; doi:10.1038/cmi.2014.106.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The impact of effective exercise against bone loss during experimental bed rest appears to be associated with increases in bone formation rather than reductions of bone resorption. Sclerostin and dickkopf-1 are important inhibitors of osteoblast activity. We hypothesized that exercise in bed rest would prevent increases in sclerostin and dickkopf-1. Twenty-four male subjects performed resistive vibration exercise (RVE; n = 7), resistive exercise only (RE; n = 8), or no exercise (control n = 9) during 60 days of bed rest (2nd Berlin BedRest Study). We measured serum levels of BAP, CTX-I, iPTH, calcium, sclerostin, and dickkopf-1 at 16 time-points during and up to 1 year after bed rest. In inactive control, after an initial increase in both BAP and CTX-I, sclerostin increased. BAP then returned to baseline levels, and CTX-I continued to increase. In RVE and RE, BAP increased more than control in bed rest (p ≤ 0.029). Increases of CTX-I in RE and RVE did not differ significantly to inactive control. RE may have attenuated increases in sclerostin and dickkopf-1, but this was not statistically significant. In RVE there was no evidence for any impact on sclerostin and dickkopf-1 changes. Long-term recovery of bone was also measured and 6-24 months after bed rest, and proximal femur bone mineral content was still greater in RVE than control (p = 0.01). The results, while showing that exercise against bone loss in experimental bed rest results in greater bone formation, could not provide evidence that exercise impeded the rise in serum sclerostin and dickkopf-1 levels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Physical inactivity is a potent stimulus for vascular remodeling, leading to a marked decrease in conduit artery diameter. However, little is known about the impact of physical inactivity on artery wall thickness or wall:lumen ratio or the potential of exercise countermeasures to modify artery wall thickness. The purpose of the study was to examine the impact of 60 days of bed rest, with or without exercise countermeasures, on carotid and superficial femoral artery wall thickness. Eighteen men were assigned to bed rest (second Berlin Bed Rest Study) and randomly allocated to control, resistive exercise, or resistive vibration exercise. Both exercise countermeasures were applied 3 times per week while the subjects were in the supine position on the bed. Sonography was used to examine baseline diameter and wall thickness of the carotid and femoral arteries. Bed rest decreased diameter of the superficial femoral artery (P=0.001) but not the carotid artery (P=0.29). Bed rest induced a significant increase in carotid and superficial femoral artery wall thickness (P=0.007 and 0.03) and wall:lumen ratio (P=0.009 and 0.001). Exercise prevented the increase in wall thickness of the carotid artery. In addition, exercise partly prevented the increased wall:lumen ratio in the superficial femoral artery. In conclusion, 8 weeks of bed rest resulted in approximately 20% increase in conduit artery wall thickness. Exercise countermeasures completely (carotid artery) or partly (superficial femoral artery) abolished the increase in wall thickness. These findings suggest that conduit artery wall thickness, a vascular characteristic associated previously with atherosclerosis, can rapidly adapt to physical inactivity and exercise in humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As part of the 2nd Berlin BedRest Study (BBR2-2), we investigated the pattern of muscle atrophy of the postero-lateral hip and hamstring musculature during prolonged inactivity and the effectiveness of two exercise countermeasures. Twenty-four male subjects underwent 60 days of head-down tilt bedrest and were assigned to an inactive control (CTR), resistive vibration exercise (RVE), or resistive exercise alone (RE) group. Magnetic resonance imaging (MRI) of the hip and thigh was taken before, during, and at end of bedrest. Volume of posterolateral hip and hamstring musculature was calculated, and the rate of muscle atrophy and the effect of countermeasure exercises were examined. After 60 days of bedrest, the CTR group showed differential rates of muscle volume loss (F = 21.44; P ≤ 0.0001) with fastest losses seen in the semi-membranosus, quadratus femoris and biceps femoris long head followed by the gluteal and remaining hamstring musculature. Whole body vibration did not appear to have an additional effect above resistive exercise in preserving muscle volume. RE and RVE prevented and/or reduced muscle atrophy of the gluteal, semi-membranosus, and biceps femoris long head muscles. Some muscle volumes in the countermeasure groups displayed faster recovery times than the CTR group. Differential atrophy occurred in the postero-lateral hip musculature following a prolonged period of unloading. Short-duration high-load resistive exercise during bedrest reduced muscle atrophy in the mono-articular hip extensors and selected hamstring muscles. Future countermeasure design should consider including isolated resistive hamstring curls to target this muscle group and reduce the potential for development of muscle imbalances.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Protein calcium sensors of the Homer family have been proposed to modulate the activity of various ion channels and nuclear factor of activated T cells (NFAT), the transcription factor modulating skeletal muscle differentiation. We monitored Homer expression and subcellular localization in human skeletal muscle biopsies following 60 d of bedrest [Second Berlin Bedrest Study (BBR2-2)]. Soleus (SOL) and vastus lateralis (VL) biopsies were taken at start (pre) and at end (end) of bedrest from healthy male volunteers of a control group without exercise (CTR; n=9), a resistive-only exercise group (RE; n=7), and a combined resistive/vibration exercise group (RVE; n=7). Confocal analysis showed Homer immunoreactivity at the postsynaptic microdomain of the neuromuscular junction (NMJ) at bedrest start. After bedrest, Homer immunoreactivity decreased (CTR), remained unchanged (RE), or increased (RVE) at the NMJ. Homer2 mRNA and protein were differently regulated in a muscle-specific way. Activated NFATc1 translocates from cytoplasm to nucleus; increased amounts of NFATc1-immunopositive slow-type myonuclei were found in RVE myofibers of both muscles. Pulldown assays identified NFATc1 and Homer as molecular partners in skeletal muscle. A direct motor nerve control of Homer2 was confirmed in rat NMJs by in vivo denervation. Homer2 is localized at the NMJ and is part of the calcineurin-NFATc1 signaling pathway. RVE has additional benefit over RE as countermeasure preventing disuse-induced neuromuscular maladaptation during bedrest.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND AND AIM: There is limited data on the effects of inactivity (prolonged bed-rest) on parameters of endocrine and metabolic function; we therefore aimed to examine changes in these systems during and after prolonged (56- day) bed-rest in male adults. SUBJECTS AND METHODS: Twenty healthy male subjects underwent 8 weeks of strict bed-rest and 12 months of follow-up as part of the Berlin Bed Rest Study. Subjects were randomized to an inactive group or a group that performed resistive vibration exercise (RVE) during bed-rest. All outcome parameters were measured before, during and after bed-rest. These included body composition (by whole body dual X-ray absorptiometry), SHBG, testosterone (T), estradiol (E2), PRL, cortisol (C), TSH and free T3 (FT3). RESULTS: Serum SHBG levels decreased in inactive subjects but remained unchanged in the RVE group (p<0.001). Serum T concentrations increased during the first 3 weeks of bed-rest in both groups (p<0.0001), while E2 levels sharply rose with re-mobilization (p<0.0001). Serum PRL decreased in the control group but increased in the RVE group (p=0.021). C levels did not change over time (p≥0.10). TSH increased whilst FT3 decreased during bed-rest (p all ≤0.0013). CONCLUSIONS: Prolonged bed-rest has significant effects on parameters of endocrine and metabolic function, some of which are related to, or counteracted by physical activity.