998 resultados para Vertical Coma


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The aim was to assess the potential association between entrance pupil location relative to the coaxially sighted corneal light reflex (CSCLR) and the progression of myopia in children fitted with orthokeratology (OK) contact lenses. Additionally, whether coma aberration induced by decentration of the entrance pupil centre relative to the CSCLR, as well as following OK treatment, is correlated with the progression of myopia, was also investigated. Methods: Twenty-nine subjects aged six to 12years and with myopia of -0.75 to -4.00 DS and astigmatism up to 1.00DC were fitted with OK contact lenses. Measurements of axial length and corneal topography were taken at six-month intervals over a two-year period. Additionally, baseline and three-month topographic outputs were taken as representative of the pre- and post-orthokeratology treatment status. Pupil centration relative to the CSCLR and magnitude of associated corneal coma were derived from corneal topographic data at baseline and after three months of lens wear. Results: The centre of the entrance pupil was located superio-temporally to the CSCLR both pre- (0.09±0.14 and -0.10±0.15mm, respectively) and post-orthokeratology (0.12±0.18 and -0.09±0.15mm, respectively) (p>0.05). Entrance pupil location pre- and post-orthokeratology lens wear was not significantly associated with the two-year change in axial length (p>0.05). Significantly greater coma was found at the entrance pupil centre compared with CSCLR both pre- and post-orthokeratology lens wear (both p<0.05). A significant increase in vertical coma was found with OK lens wear compared to baseline (p<0.001) but total root mean square (RMS) coma was not associated with the change in axial length (all p>0.05). Conclusion: Entrance pupil location relative to the CSCLR was not significantly affected by either OK lens wear or an increase in axial length. Greater magnitude coma aberrations found at the entrance pupil centre in comparison to the CSCLR might be attributed to centration of orthokeratological treatments at the CSCLR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Poor image quality in the peripheral field may lead to myopia. Most studies measuring the higher order aberrations in the periphery have been restricted to the horizontal visual field. The purpose of this study was to measure higher order monochromatic aberrations across the central 42º horizontal x 32º vertical visual fields in myopes and emmetropes. ---------- Methods: We recruited 5 young emmetropes with spherical equivalent refractions +0.17 ± 0.45D and 5 young myopes with spherical equivalent refractions -3.9 ± 2.09D. Measurements were taken with a modified COAS-HD Hartmann-Shack aberrometer (Wavefront Sciences Inc). Measurements were taken while the subjects looked at 38 points arranged in a 7 x 6 matrix (excluding four corner points) through a beam splitter held between the instrument and the eye. A combination of the instrument’s software and our own software was used to estimate OSA Zernike coefficients for 5mm pupil diameter at 555nm for each point. The software took into account the elliptical shape of the off-axis pupil. Nasal and superior fields were taken to have positive x and y signs, respectively. ---------- Results: The total higher order RMS (HORMS) was similar on-axis for emmetropes (0.16 ± 0.02 μm) and myopes (0.17 ± 0.02 μm). There was no common pattern for HORMS for emmetropes across the visual field where as 4 out of 5 myopes showed a linear increase in HORMS in all directions away from the minimum. For all subjects, vertical and horizontal comas showed linear changes across the visual field. The mean rate of change of vertical coma across the vertical meridian was significantly lower (p = 0.008) for emmetropes (-0.005 ± 0.002 μm/deg) than for myopes (-0.013 ± 0.004 μm/deg). The mean rate of change of horizontal coma across the horizontal meridian was lower (p = 0.07) for emmetropes (-0.006 ± 0.003 μm/deg) than myopes (-0.011 ± 0.004 μm/deg). ---------- Conclusion: We have found differences in patterns of higher order aberrations across the visual fields of emmetropes and myopes, with myopes showing the greater rates of change of horizontal and vertical coma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To investigate the influence of keratoconus on peripheral ocular aberrations. Methods: Aberrations of 7 mild and 5 moderate keratoconics were determined over a 42°horizontal x 32° vertical visual field with a modified COAS-HD aberrometer. Control data were obtained from an emmetropic group. Results: Most aberrations in keratoconics showed field dependence predominately along the vertical meridian. Mean spherical equivalent M, oblique astigmatism J45 and regular astigmatism J180 refraction components and total root mean square aberrations (excluding defocus) had high magnitudes in the inferior visual field. The rates of change of aberrations were higher in moderate than in mild keratoconics. Coma was the dominant peripheral higher-order aberration in both emmetropes and keratoconics; for the latter it had high magnitudes in the centre and periphery of the visual field. Conclusion: Greater rates of change of aberrations across the visual field occurred for the keratoconic groups than for the emmetropic control group. Moderate keratoconics had more rapid changes in, and higher magnitudes of aberrations across the visual field than mild keratoconics. The dominant higher-order aberration for the keratoconics across the visual field was vertical coma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE. To measure tear film surface quality in healthy and dry eye subjects using three noninvasive techniques of tear film quality assessment and to establish the ability of these noninvasive techniques to predict dry eye. METHODS. Thirty four subjects participated in the study, and were classified as dry eye or normal, based on standard clinical assessments. Three non-invasive techniques were applied for measurement of tear film surface quality: dynamic-area high-speed videokeratoscopy (HSV), wavefront sensing (DWS) and lateral shearing interferometry (LSI). The measurements were performed in both natural blinking conditions (NBC) and in suppressed blinking conditions (SBC). RESULTS. In order to investigate the capability of each method to discriminate dry eye subjects from normal subjects, the receiver operating curve (ROC) was calculated and then the area under the curve (AUC) was extracted. The best result was obtained for the LSI technique (AUC=0.80 in SBC and AUC=0.73 in NBC), which was followed by HSV (AUC=0.72 in SBC and AUC=0.71 in NBC). The best result for DWS was AUC=0.64 obtained for changes in vertical coma in suppressed blinking conditions, while for normal blinking conditions the results were poorer. CONCLUSIONS. Non-invasive techniques of tear film surface assessment can be used for predicting dry eye and this can be achieved in natural blinking as well as suppressed blinking conditions. In this study, LSI showed the best detection performance, closely followed by the dynamic-area HSV. The wavefront sensing technique was less powerful, particularly in natural blinking conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are several noninvasive techniques for assessing the kinetics of tear film, but no comparative studies have been conducted to evaluate their efficacies. Our aim is to test and compare techniques based on high-speed videokeratoscopy (HSV), dynamic wavefront sensing (DWS), and lateral shearing interferometry (LSI). Algorithms are developed to estimate the tear film build-up time TBLD, and the average tear film surface quality in the stable phase of the interblink interval TFSQAv. Moderate but significant correlations are found between TBLD measured with LSI and DWS based on vertical coma (Pearson's r2=0.34, p<0.01) and higher order rms (r2=0.31, p<0.01), as well as between TFSQAv measured with LSI and HSV (r2=0.35, p<0.01), and between LSI and DWS based on the rms fit error (r2=0.40, p<0.01). No significant correlation is found between HSV and DWS. All three techniques estimate tear film build-up time to be below 2.5 sec, and they achieve a remarkably close median value of 0.7 sec. HSV appears to be the most precise method for measuring tear film surface quality. LSI appears to be the most sensitive method for analyzing tear film build-up.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We modified a commercial Hartmann-Shack aberrometer and used it to measure ocular aberrations across the central 42º horizontal x 32º vertical visual fields of five young emmetropic subjects. Some Zernike aberration coefficients show coefficient field distributions that were similar to the field dependence predicted by Seidel theory (astigmatism, oblique astigmatism, horizontal coma, vertical coma), but defocus did not demonstrate such similarity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To use a large wavefront database of a clinical population to investigate relationships between refractions and higher order aberrations and between aberrations of right and left eyes. Methods: Third and fourth-order aberration coefficients and higher-order root-mean-squared aberrations (HO RMS), scaled to a pupil size of 4.5 mm diameter, were analysed in a population of about 24,000 patients from Carl Zeiss Vision's European wavefront database. Correlations were determined between the aberrations and the variables of refraction, near addition and cylinder. Results: Most aberration coefficients were significantly dependent upon these variables, but the proportions of aberrations that could be explained by these factors were less than 2% except for spherical aberration (12%), horizontal coma (9%) and HO RMS (7%). Near addition was the major contributor for horizontal coma (8.5% out of 9.5%) and spherical equivalent was the major contributor for spherical aberration (7.7% out of 11.6%). Interocular correlations were highly significant for all aberration coefficients, varying between 0.16 and 0.81. Anisometropia was a variable of significance for three aberrations (vertical coma, secondary astigmatism and tetrafoil), but little importance can be placed on this because of the small proportions of aberrations that can be explained by refraction (all less than 1.0 %). Conclusions: Most third- and fourth-order aberration coefficients were significantly dependent upon spherical equivalent, near addition and cylinder, but only horizontal coma (9%) and spherical aberration (12%) showed dependencies of greater than 2%. Interocular correlations were highly significant for all aberration coefficients, but anisometropia had little influence on aberration coefficients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To examine between eye differences in corneal higher order aberrations and topographical characteristics in a range of refractive error groups. Methods: One hundred and seventy subjects were recruited including; 50 emmetropic isometropes, 48 myopic isometropes (spherical equivalent anisometropia ≤ 0.75 D), 50 myopic anisometropes (spherical equivalent anisometropia ≥ 1.00 D) and 22 keratoconics. The corneal topography of each eye was captured using the E300 videokeratoscope (Medmont, Victoria, Australia) and analyzed using custom written software. All left eye data were rotated about the vertical midline to account for enantiomorphism. Corneal height data were used to calculate the corneal wavefront error using a ray tracing procedure and fit with Zernike polynomials (up to and including the eighth radial order). The wavefront was centred on the line of sight by using the pupil offset value from the pupil detection function in the videokeratoscope. Refractive power maps were analysed to assess corneal sphero-cylindrical power vectors. Differences between the more myopic (or more advanced eye for keratoconics) and the less myopic (advanced) eye were examined. Results: Over a 6 mm diameter, the cornea of the more myopic eye was significantly steeper (refractive power vector M) compared to the fellow eye in both anisometropes (0.10 ± 0.27 D steeper, p = 0.01) and keratoconics (2.54 ± 2.32 D steeper, p < 0.001) while no significant interocular difference was observed for isometropic emmetropes (-0.03 ± 0.32 D) or isometropic myopes (0.02 ± 0.30 D) (both p > 0.05). In keratoconic eyes, the between eye difference in corneal refractive power was greatest inferiorly (associated with cone location). Similarly, in myopic anisometropes, the more myopic eye displayed a central region of significant inferior corneal steepening (0.15 ± 0.42 D steeper) relative to the fellow eye (p = 0.01). Significant interocular differences in higher order aberrations were only observed in the keratoconic group for; vertical trefoil C(3,-3), horizontal coma C(3,1) secondary astigmatism along 45 C(4, -2) (p < 0.05) and vertical coma C(3,-1) (p < 0.001). The interocular difference in vertical pupil decentration (relative to the corneal vertex normal) increased with between eye asymmetry in refraction (isometropia 0.00 ± 0.09, anisometropia 0.03 ± 0.15 and keratoconus 0.08 ± 0.16 mm) as did the interocular difference in corneal vertical coma C (3,-1) (isometropia -0.006 ± 0.142, anisometropia -0.037 ± 0.195 and keratoconus -1.243 ± 0.936 μm) but only reached statistical significance for pair-wise comparisons between the isometropic and keratoconic groups. Conclusions: There is a high degree of corneal symmetry between the fellow eyes of myopic and emmetropic isometropes. Interocular differences in corneal topography and higher order aberrations are more apparent in myopic anisometropes and keratoconics due to regional (primarily inferior) differences in topography and between eye differences in vertical pupil decentration relative to the corneal vertex normal. Interocular asymmetries in corneal optics appear to be associated with anisometropic refractive development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose/aim Myopia incidence is increasing around the world. Myopisation is considered to be caused by a variety of factors. One consideration is whether higher-order aberrations (HOA) influence myopisation. More knowledge of optics in anisometropic eyes might give further insight into the development of refractive error. Materials and methods To analyse the possible influence of HOA on refractive error development, we compared HOA between anisometropes and isometropes. We analysed HOA up to the 4th order for both eyes of 20 anisometropes (mean age: 43 ± 17 years) and 20 isometropes (mean age: 33 ±17 years). HOA were measured with the Shack-Hartman i.Profiler (Carl Zeiss, Germany) and were recalculated for a 4 mm pupil. Mean spherical equivalent (MSE) was based on the subjective refraction. Anisometropia was defined as ≥1D interocular difference in MSE. The mean absolute differences between right and left eyes in spherical equivalent were 0.28 ± 0.21 D in the isometropic group and 2.81 ± 2.04 D in the anisometropic group. Interocular differences in HOA were compared with the interocular difference in MSE using correlations. Results For isometropes oblique trefoil, vertical coma, horizontal coma and spherical aberration showed significant correlations between the two eyes. In anisometropes all analysed higher-order aberrations correlated significantly between the two eyes except oblique secondary astigmatism and secondary astigmatism. When analysing anisometropes and isometropes separately, no significant correlations were found between interocular differences of higher-order aberrations and MSE. For isometropes and anisometropes combined, tetrafoil correlated significantly with MSE in left eyes. Conclusions The present study could not show that interocular differences of higher-order aberrations increase with increasing interocular difference in MSE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose To investigate the differences between and variations across time in corneal topography and ocular wavefront aberrations in young Singaporean myopes and emmetropes. Methods We used a videokeratoscope and wavefront sensor to measure the ocular surface topography and wavefront aberrations of the total eye optics in the morning, mid-day and late afternoon on two separate days. Topography data were used to derive the corneal surface wavefront aberrations. Both the corneal and total wavefronts were analysed up to the 4th radial order of the Zernike polynomial expansion, and were centred on the entrance pupil (5 mm). The participants included 12 young progressing myopes, 13 young stable myopes and 15 young age-matched emmetropes. Results For all subjects considered together there were significant changes in some of the aberrations terms across the day, such as spherical aberration ( ) and vertical coma ( ) (repeated measures ANOVA, p<0.05). The magnitude of positive spherical aberration ( ) was significantly lower in the progressing myope group than that of the stable myopes (p=0.04) and emmetrope group (p=0.02). There were also significant interactions between refractive group and time of day for with/against-the-rule astigmatism ( ). Significantly lower 4th order RMS of ocular wavefront aberrations were found in the progressing myope group compared with the stable myopes and emmetropes (p<0.01). Conclusions These differences and variations in the corneal and total aberrations may have significance for our understanding of refractive error development and for clinical applications requiring accurate wavefront measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose Transient changes in corneal topography associated with soft and conventional or reverse geometry rigid contact lens wear have been well documented; however, only a few studies have examined the influence of scleral contact lens wear upon the cornea. Therefore, in this study, we examined the influence of modern miniscleral contact lenses, which land entirely on the sclera and overlying tissues, upon anterior corneal curvature and optics. Methods Anterior corneal topography and elevation data were acquired using Scheimpflug imaging (Pentacam HR, Oculus) immediately prior to and following 8 hours of miniscleral contact lens wear in 15 young healthy adults (mean age 22 ± 3 years, 8 East Asian, 7 Caucasian) with normal corneae. Corneal diurnal variations were accounted for using data collected on a dedicated measurement day without contact lens wear. Corneal clearance was quantified using an optical coherence tomographer (RS-3000, Nidek) following lens insertion and after 8 hours of lens wear. Results Although corneal clearance was maintained throughout the 8 hour lens wear period, significant corneal flattening (up to 0.08 ± 0.04 mm) was observed, primarily in the superior mid-peripheral cornea, which resulted in a slight increase in against-the-rule corneal astigmatism (mean +0.02/-0.15 x 94 for an 8 mm diameter). Higher order aberration terms of horizontal coma, vertical coma and spherical aberration all underwent significant changes for an 8 mm corneal diameter (p ≤ 0.01), which typically resulted in a decrease in RMS error values (mean change in total higher order RMS -0.035 ± 0.046 µm for an 8 mm diameter). There was no association between the magnitude of change in central or mid-peripheral corneal clearance during lens wear and the observed changes in corneal curvature (p > 0.05). However, Asian participants displayed a significantly greater reduction in corneal clearance (p = 0.04) and greater superior-nasal corneal flattening compared to Caucasians (p = 0.048). Conclusions Miniscleral contact lenses that vault the cornea induce significant changes in anterior corneal surface topography and higher order aberrations following 8 hours of lens wear. The region of greatest corneal flattening was observed in the superior-nasal mid-periphery, more so in Asian participants. Practitioners should be aware that corneal measurements obtained following miniscleral lens removal may mask underlying corneal steepening.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE:To investigate the mechanism of action of the Tetraflex (Lenstec Kellen KH-3500) accommodative intraocular lens (IOL). METHODS:Thirteen eyes of eight patients implanted with the Tetraflex accommodating IOL for at least 2 years underwent assessment of their objective amplitude-of-accommodation by autorefraction, anterior chamber depth and pupil size with optical coherence tomography, and IOL flexure with aberrometry, each viewing a target at 0.0 to 4.00 diopters of accommodative demand. RESULTS:Pupil size decreased by 0.62+/-0.41 mm on increasing accommodative demand, but the Tetraflex IOL was relatively fixed in position within the eye. The ocular aberrations of the eye changed with increased accommodative demand, but not in a consistent manner among individuals. Those aberrations that appeared to be most affected were defocus, vertical primary and secondary astigmatism, vertical coma, horizontal and vertical primary and secondary trefoil, and spherical aberration. CONCLUSIONS:Some of the reported near vision benefits of the Tetraflex accommodating IOL appear to be due to changes in the optical aberrations because of the flexure of the IOL on accommodative effort rather than forward movement within the capsular bag.