926 resultados para Using an harmonic instrument


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach to compute transonic Limit Cycle O
scillations using a coupled Harmonic Balance formulation based on the Euler equations for fluid dynamics and finite element models. The paper will investigate the role of aerodynamic (shocks) and structural nonlinearities in driving the limit cycle behaviour. Part icular attention will be given to nonlinear interactions for subcritical LCOs. The Aero elastic Harmonic Balance formulation, allows for solutions of the coupled structural dynamics and CFD system at a reduced cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I - As minhas expectativas eram elevadas pois este regresso à Escola Superior de Música de Lisboa permitia-me voltar a trabalhar com os professores que me formaram como músico e professor e com eles poder actualizar-me sobre vários temas ligados à pedagogia. Este aspecto é muito importante pois chego à conclusão que o tempo por vezes provoca-nos excesso de confiança que parece “cegar-nos” não nos deixando ver erros pedagógicos muitas vezes evitáveis. Quando ingressei neste estágio sentia-me confiante e seguro quanto às minhas capacidades como professor. O momento de viragem na minha perspectiva do estágio dá-se quando surgem as observações/gravações e respectivas análises e reflexões das aulas. Procurei trabalhar nessas aulas da forma mais natural possível pois o meu objectivo era observar o meu trabalho diário. A primeira observação das aulas permitiu-me anotar algumas coisas menos boas. Contudo, quando essa observação foi feita com o professor de didática os aspectos menos positivos ganharam uma enorme proporção: (1) falhas ao nível da instrução: demasiado longo, (2) feedback de pouca qualidade ou eficácia , (3) pouca percentagem de alunos que atingiam os objectivos., (4) ritmo de aula por vezes baixo devido a períodos longos de instrução ou devido a uma má gestão do espaço. Todos estes problemas eram mais visíveis quando as turmas eram maiores. Ao longo do estágio, e após a detecção destas falhas, fui procurando evitar estas práticas em todas as turmas onde leccionava. Senti que o ritmo de aula aumentou substancialmente não apenas à custa da energia do professor e de boas estratégias mas porque sobretudo se “falava menos e trabalhava-se mais”. Os erros dos alunos passaram a ser corrigos enquanto trabalhavam (feedback corretivo próximo do momento positivo ou negativo), o feedback positivo passou a ser mais destacado, a disposição da sala alterou-se de forma aos alunos estarem mais perto do professor, e este procurou ser menos “criativo” no momento de alterar o plano de aula devido a ideias momentâneas o que provocou mais tempo para cada estratégia e para que mais alunos fossem atingindo os objectivos. Apesar da evolução no sentido de proporcionar aos alunos aulas mais rentáveis e de ainda melhor qualidade, existe a consciência que alguns dos erros cometidos eram hábitos e como tal poderão levar algum tempo a ser corrigidos. Contudo, existe a consciência e a vontade em debelá-los da minha prática docente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a novel approach to compute transonic Lim
it Cycle Oscillations using high fidelity analysis. CFD based Harmonic Balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a new methodology to determine the unknown frequency of oscillations, enabling HB methods to accurately capture Limit Cycle Oscillations (LCOs); this is achieved by defining a frequency updating procedure based on a coupled CFD/CSD Harmonic Balance formulation to find the LCO condition. A pitch/plunge aerofoil and delta wing aerodynamic and respective linear structural models are used to validate the new method against conventional time-domain simulations. Results show consistent agreement between the proposed and time-marching methods for both LCO amplitude and frequency, while producing at least one order of magnitude reduction in computational time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a extends a novel approach to compute tran sonic Limit Cycle Oscillations using high fidelity analysis. CFD based Harmonic Balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a methodology to determine the unknown frequency of oscillations using an implicit for- mulation of the HB method to accurately capture Limit Cycle Oscillations (LCOs); this is achieved by defining a frequency updating procedure based on a coupled CFD/CSD Harmonic Balance formulation to find the LCO condition. A pitch/plunge aerofoil and respective linear structural models is used to exercise the new method. Results show consistent agreement between the proposed and time-marching methods for both LCO amplitude and frequency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a novel approach to compute transonic limit-cycle oscillations using high-fidelity analysis. Computational-Fluid-Dynamics based harmonic balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a new methodology to determine the unknown frequency of oscillations, enabling harmonic balance methods to accurately capture limit-cycle oscillations; this is achieved by defining a frequency-updating procedure based on a coupled computational-fluid-dynamics/computational-structural-dynamics harmonic balance formulation to find the limit-cycle oscillation condition. A pitch/plunge airfoil and delta wing aerodynamic and respective linear structural models are used to validate the new method against conventional time-domain simulations. Results show consistent agreement between the proposed and time-marching methods for both limit-cycle oscillation amplitude and frequency while producing at least a one-order-of-magnitude reduction in computational time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method of accurately controlling the position of a mobile robot using an external Large Volume Metrology (LVM) instrument is presented in this paper. Utilizing a LVM instrument such as the laser tracker in mobile robot navigation, many of the most difficult problems in mobile robot navigation can be simplified or avoided. Using the real- Time position information from the laser tracker, a very simple navigation algorithm, and a low cost robot, 5mm repeatability was achieved over a volume of 30m radius. A surface digitization scan of a wind turbine blade section was also demonstrated, illustrating possible applications of the method for manufacturing processes. © Springer-Verlag Berlin Heidelberg 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Credentials are a salient form of cultural capital and if a student’s learning and productions are not assessed, they are invisible in current social systems of education and employment. In this field, invisible equals non-existent. This paper arises from the context of an alternative education institution where conventional educational assessment techniques currently fail to recognise the creativity and skills of a cohort of marginalised young people. In order to facilitate a new assessment model an electronic portfolio system (EPS) is being developed and trialled to capture evidence of students’ learning and their productions. In so doing a dynamic system of arranging, exhibiting, exploiting and disseminating assessment data in the form of coherent, meaningful and valuable reports will be maintained. The paper investigates the notion of assessing development of creative thinking and skills through the means of a computerised system that operates in an area described as the efield. A model of the efield is delineated and is explained as a zone existing within the internet where free users exploit the cloud and cultivate social and cultural capital. Drawing largely on sociocultural theory and Bourdieu’s concepts of field, habitus and capitals, the article positions the efield as a potentially productive instrument in assessment for learning practices. An important aspect of the dynamics of this instrument is the recognition of teachers as learners. This is seen as an integral factor in the sociocultural approach to assessment for learning practices that will be deployed with the EPS. What actually takes place is argued to be assessment for learning as a field of exchange. The model produced in this research is aimed at delivering visibility and recognition through an engaging instrument that will enhance the prospects of marginalised young people and shift the paradigm for assessment in a creative world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The aim of this report is to identify from the literature common themes relating to the concept of hospital preparedness for emergencies to develop an agreed framework for evaluation. Method: A systematic literature search identified appropriate articles for critical appraisal. A meta-ethnography approach was used to synthesize the findings, using both reciprocal translation and line-of-argument synthesis. Results: From an initial 2162 articles, we identified 13 articles that specifically addressed the aims of this review and formed the basis of the intended analysis. Conclusion: Hospital emergency preparedness is essential for effective disaster relief. Developing a systematic and structured methodology is necessary to assess hospital preparedness. (Disaster Med Public Health Preparedness: 2014:0:1-9)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks. © 2011 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An external cavity semiconductor laser interferometer used to measure far distance micro-vibration in real time is proposed. In the interferometer, a single longitudinal mode and excellent coherent characteristic grating external cavity semiconductor laser is constructed and acted as a light source and a phase compensator. Its coherent length exceeds 200 meters. The angle between normal and incidence beam of the far object is allowed to change in definite range during the measurement with this interferometer, and this makes the far distance interference measurement easier and more convenient. Also, it is not required to keep the amplitudes of the first and second harmonic components equal, and then the dynamic range is increased. A feedback control system is used to compensate the phase disturbance between the two interference beams introduced by environmental vibration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigates limit cycle oscillations in the transonic regime. A novel approach to predict Limit Cycle Oscillations using high fidelity analysis is exploited to accelerate calculations. The method used is an Aeroeasltic Harmonic Balance approach, which has been proven to be efficient and able to predict periodic phenomena. The behaviour of limit cycle oscillations is analysed using uncertainty quantification tools based on polynomial chaos expansions. To improve the efficiency of the sampling process for the polynomial-chaos expansions an adaptive sampling procedure is used. These methods are exercised using two problems: a pitch/plunge aerofoil and a delta-wing. Results indicate that Mach n. variability is determinant to the amplitude of the LCO for the 2D test case, whereas for the wing case analysed here, variability in the Mach n. has an almost negligible influence in amplitude variation and the LCO frequency variability has an almost linear relation with Mach number. Further test cases are required to understand the generality of these results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Harmonic Balance method is an attractive solution for computing periodic responses and can be an alternative to time domain methods, at a reduced computational cost. The current paper investigates using a Harmonic Balance method for simulating limit cycle oscillations under uncertainty. The Harmonic Balance method is used in conjunction with a non-intrusive polynomial-chaos approach to propagate variability and is validated against Monte Carlo analysis. Results show the potential of the approach for a range of nonlinear dynamical systems, including a full wing configuration exhibiting supercritical and subcritical bifurcations, at a fraction of the cost of performing time domain simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed an ensemble Kalman Filter (EnKF) to estimate 8-day regional surface fluxes of CO2 from space-borne CO2 dry-air mole fraction observations (XCO2) and evaluate the approach using a series of synthetic experiments, in preparation for data from the NASA Orbiting Carbon Observatory (OCO). The 32-day duty cycle of OCO alternates every 16 days between nadir and glint measurements of backscattered solar radiation at short-wave infrared wavelengths. The EnKF uses an ensemble of states to represent the error covariances to estimate 8-day CO2 surface fluxes over 144 geographical regions. We use a 12×8-day lag window, recognising that XCO2 measurements include surface flux information from prior time windows. The observation operator that relates surface CO2 fluxes to atmospheric distributions of XCO2 includes: a) the GEOS-Chem transport model that relates surface fluxes to global 3-D distributions of CO2 concentrations, which are sampled at the time and location of OCO measurements that are cloud-free and have aerosol optical depths <0.3; and b) scene-dependent averaging kernels that relate the CO2 profiles to XCO2, accounting for differences between nadir and glint measurements, and the associated scene-dependent observation errors. We show that OCO XCO2 measurements significantly reduce the uncertainties of surface CO2 flux estimates. Glint measurements are generally better at constraining ocean CO2 flux estimates. Nadir XCO2 measurements over the terrestrial tropics are sparse throughout the year because of either clouds or smoke. Glint measurements provide the most effective constraint for estimating tropical terrestrial CO2 fluxes by accurately sampling fresh continental outflow over neighbouring oceans. We also present results from sensitivity experiments that investigate how flux estimates change with 1) bias and unbiased errors, 2) alternative duty cycles, 3) measurement density and correlations, 4) the spatial resolution of estimated flux estimates, and 5) reducing the length of the lag window and the size of the ensemble. At the revision stage of this manuscript, the OCO instrument failed to reach its orbit after it was launched on 24 February 2009. The EnKF formulation presented here is also applicable to GOSAT measurements of CO2 and CH4.