999 resultados para U-14C


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The incubation of the model pollutant [U-14C]'-4-fluorobiphenyl (4FBP) in soil, in the presence and absence of biphenyl (a co-substrate), was carried out in order to study the qualitative disposition and fate of the compound using 14C-HPLC and 19F NMR spectroscopy. Components accounted for using the radiolabel were volatilization, CO2 evolution, organic solvent extractable and bound residue. Quantitative analysis of these data gave a complete mass balance. After sample preparation. 14C-HPLC was used to establish the number of 4FBP related components present in the organic solvent extract. 19F NMR was also used to quantify the organic extracts and to identify the components of the extract. Both approaches showed that the composition of the solvent extractable fractions comprised only parent compound with no metabolites present. As the 14C radiolabel was found to be incorporated into the soil organic matter this indicates that metabolites were being generated, but were highly transitory as incorporation into the SOM was rapid. The inclusion of the co-substrate biphenyl was to increase the overall rate of degradation of 4FBP in soil. The kinetics of disappearance of parent from the soil using the data obtained were investigated from both techniques. This is the first report describing the degradation of a fluorinated biphenyl in soil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some of the enzyme systems in the formation of p-hydroxybenzoate from tyrosine have been studied in the rat liver in vitro. The conversion of p-hydroxycinnamate into p-hydroxybenzoate, which was found in rat liver mitochondria showed a number of differences when compared with the b-oxidation of fatty acids. Studies with p-hydroxy[U-14C]cinnamate indicated that 14CO2 was released during the formation of p-hydroxybenzoate. The formation of p-hydroxycinnamate from tyrosine of p-hydroxyphenyl-lactate could not be demonstrated in vitro. The interconversion of p-hydroxycinnamate and p-hydroxyphenylpropionate was demonstrated in rat liver mitochondria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deprivation of endogenous LH by LH antiserum (LH A/S) in 6-day pregnant rats did not affect the luteal or serum progesterone within 24 h. LH A/S treatment on day 7 or 8 of pregnancy, however, caused a 70 and 92% reduction in luteal progesterone, respectively, within 24 h. Serum levels of progesterone showed a similar reduction. In the case of pregnant hamster, unlike the rat, there was a significant decrease in progesterone in the serum, luteal and non-luteal compartments whether the A/S was administered on day 4, 5 or 6. There was more than a 10-fold increase in the luteal cholesterol esters within 24 h whether the A/S was given on day 6, 7 or 8 of pregnancy in the rat. Rat corpora lutea of days 6 and 8 of pregnancy reacted in a like manner to LH-deprivation, showing an increased utilization of [U-14C]glucose to form 14CO2 in vitro. In the rat, LH (25 μg NIH-S19) administration in vivo either on day 6 or day 8 of pregnancy, caused within 2 h an increase in serum and non-luteal progesterone, but luteal progesterone was unchanged. On the other hand, LH administration to hamsters on day 8 of pregnancy caused an increase in progesterone levels in serum, luteal and non-luteal tissue. Incubation of corpora lutea isolated from untreated 6- and 8-day pregnant rats with LH brought about an increase in progesterone secretion into the medium in both cases. The results show that, even though LH-deprivation does not apparently affect progesterone concentration in the corpus luteum of 6-day pregnant rats, it does affect other metabolic parameters such as glucose utilization and cholesterol turnover, suggesting that the corpus luteum of early pregnancy exhibits a continuous dependency on LH for the maintainence of metabolic functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The urinary excretion of p-hydroxybenzoate was not altered by ubiquinone feeding, but, although decreased considerably, was not eliminated in protein deficiency. The incorporation of p-hydroxy[U-14C]benzaldehyde into ubiquinone in vivo increased in cold-exposed and p-chlorophenoxyisobutyrate (clofibrate)-fed rats, and these changes were parallel with the changes in the incorporation of [2-14C]mevalonate under these conditions. Starvation, cholesterol feeding and cholic acid feeding resulted in the decreased incorporation of p-hydroxy[U-14C]benzaldehyde into ubiquinone, confirming the decreased ubiquinone synthesis. Feeding exogenous ubiquinone increased the hepatic ubiquinone concentration, but did not cause any decrease in the incorporation of p-hydroxy[U-14C]benzaldehyde into ubiquinone, indicating the absence of a feedback control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The angiospermous plant parasite Cuscuta derives reduced carbon and nitrogen compounds primarily from its host. Free amino acids along Cuscuta vines in three zones, viz., 0 to 5 cm, 5 to 15 cm, and 15 to 30 cm, which in a broad sense represent the region of cell division, cell elongation and differentiation and vascular tissue differentiation respectively, were quantitatively estimated. The free amino acid content was the highest in the 0 to 5 cm region and progressively decreased along the posterior regions of the vine. The haustorial region showed the lowest content of free amino acids. In general, the free amino acid content in samples collected at 7 p.m. was found to be higher than that in the samples collected at 7 a.m. Three basic amino acids, histidine, the uncommon amino acid γ-hydroxyarginine, and arginine constituted more than 50% of the total free amino acids in all the zones studied except the haustorial region. Aspartic acid and glutamic acid constituted the major portion in the acidic and neutral fraction of amino acids. Glutamine, asparagine, threonine, and serine were eluted together and occurred in substantial amounts. γ-Hydroxyarginine constituted the largest fraction in the cut end exudate of Cuscuta and presumably appeared to be the major form of transport amino acid. γ-Hydroxyarginine was also a major constituent of the basic amino acids in Cuscuta vines parasitizing host plants from widely separated families, suggesting that this amino acid is a biosynthetic product of the parasite rather than that of the hosts. Also, U-14C arginine was converted to γ-hydroxyarginine by cut Cuscuta vines, suggesting that γ-hydroxyarginine is synthesized de novo from arginine by Cuscuta.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biologisesti aktiivisilla oligosakkarideilla on vaikutuksia kasvin kasvuun ja kehittymiseen. Tietyn tyyppiset oligosakkaridit voivat myös indusoida puolustusreaktion valikoivasti oligosakkaridista riippuen. Useat biologisesti aktiiviset oligosakkaridit on löydetty kasvien soluseinää keinotekoisesti hajottamalla. Pro gradu -tutkielman tarkoituksena oli karakterisoida kuusen (Picea abies) solukkolinjan A3/85 solususpensiokasvatukseen erittämiä oligosakkarideja. Kuusisolukko A3/85 on otollinen kandidaatti tutkimukseen, sillä sen on todettu erittävän solunulkoista ligniiniä suspensioliuokseen. Oligosakkarideja karakterisoitiin yhden ja neljän vuorokauden kasvatuksista. Alustan sokeripitoisuutta alennettiin neljän vuorokauden kasvatuksissa karakterisoinnin helpottamiseksi. Oligosakkaridien pitoisuudet voivat olla hyvin alhaisia, joten solujen tuottamia yhdisteitä seurattiin myös radioaktiivisen D-[U-14C]-glukoosin avulla. Kasvien soluseinässä yleiset glukuronihappo, galakturonihappo, ksyloosi, arabinoosi ja apioosi valmistetaan glukoosi-6-fosfaatista, joko myo-inositolihapetusreitin tai sokerihapetusreitin kautta. Lisäksi tutkittiin, muuttuuko radioaktiivisen leiman jakautuminen näytteissä, kun kasvatusliuoksessa on tai ei ole myo-inositolia. Kasvatusliuos fraktioitiin geelisuodatuskromatografialla. Fraktioiden sisältämät yhdisteet eroteltiin paperikromatografialla ja värjättiin hopeanitraatilla, aniliinivetyftalaatilla tai ninhydriinillä. Hopeanitraatti on hyödyllinen monosakkaridien, oligosakkaridien ja alditolien värjäyksessä. Radioaktiivisuuden kertymistä yhdisteisiin seurattiin nestetuikelaskimella ja autoradiografialla. Paperikromatografialla erotelluista yhdisteistä valittiin mielenkiintoiseksi koetut yhdisteet, jotka eristettiin preparatiivisella paperikromatografialla. Eristetyille yhdisteille tehtiin happohydrolysointi, borohydridikäsittely tai entsymaattinen Driselaasi -käsittely. Happohydrolysointi avaa sokeriyksiköiden väliset glykosidiset sidokset. Natriumborohydridipelkistys muuttaa oligosakkaridiketjun pelkistävän sokerin sokerialkoholiksi ja Driselaasi -käsittely avaa isoprimeveroosin Xyl-Į-(1ĺ6)-Glc -sidosta lukuun ottamatta muut glykosidiset sidokset. 14C-leima on jakautunut myo-inositolin kanssa kasvatetun näytteen fraktioinnissa vahvemmin suurimolekyylisiin yhdisteisiin, kun taas ilman myo-inositolia kasvatetussa näytteessä suurin aktiivisuus D-[U-14C]-glukoosin jälkeen on trisakkaridien alueella. Suspensioliuoksista analysoitiin useita oligosakkarideja polymerisaatioasteella 1-4. Analysoiduista yhdisteistä kolme sisälsivät ksyloosia, jota solut voivat syntetoida joko myo-inositolin hapetusreitin tai glukoosin hapetusreitin kautta. Myo-inositolin puuttuminen alustasta lisäsi näiden leimattujen yhdisteiden pitoisuutta. Alustan myo-inositoli ei ole radioaktiivista, joten myo-inositolihapetusreitin kautta valmistetut monosakkaridit eivät näy autoradiografiassa. Vaikuttaisi siis siltä, että myo-inositolihapetusreitti on aktiivinen ainakin, jos solukolle tarjotaan myo-inositolia. Lisätty myo-inositoli vähentää sokerihapetusreitin aktiivisuutta. Työn aikana onnistuttiin eristämään ja osittain tunnistamaan useita kuusen suspensioliuoksen yhdisteitä. Myo-inositolihapetusreitti todettiin aktiiviseksi solukkokasvatuksessa, kun ravintoalustassa on myo-inositolia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypo-osmolality influences tissue metabolism, but research on protein turnover in skeletal muscle is limited. The purpose of this investigation was to examine the effects of hypo-osmotic stress on protein turnover in rat skeletal muscle. We hypothesized increased protein synthesis and reduced degradation following hypo-osmotic exposure. EDL muscles (n=8/group) were incubated in iso-osmotic (290 Osm/kg) or hypo-osmotic (190 Osm/kg) modified medium 199 (95% O2, 5% CO2, pH 7.4, 30±2 °C) for 60 min, followed by 75 min incubations with L-U[14C]phenylalanine or cycloheximide to determine protein synthesis and degradation. Immunoblotting was performed to assess signalling pathways involved. Phenylalanine uptake and incorporation were increased by 199% and 169% respectively in HYPO from ISO (p < 0.05). This was supported by elevated phosphorylation of mTOR Ser2448 (+12.5%) and increased Thr389 phosphorylation on p70s6 kinase (+23.6%) (p < 0.05). Hypo-osmotic stress increased protein synthesis and potentially amino acid uptake. Future studies should examine the upstream mechanisms involved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of carbohydrate or water ingestion on metabolism were investigated in seven male subjects during two running and two cycling trials lasting 60 min at individual lactate threshold using indirect calorimetry, U-14C-labeled tracer-derived measures of the rates of oxidation of plasma glucose, and direct determination of mixed muscle glycogen content from the vastus lateralis before and after exercise. Subjects ingested 8 ml/kg body mass of either a 6.4% carbohydrate-electrolyte solution (CHO) or water 10 min before exercise and an additional 2 ml/kg body mass of the same fluid after 20 and 40 min of exercise. Plasma glucose oxidation was greater with CHO than with water during both running (65 ± 20 vs. 42 ± 16 g/h; P < 0.01) and cycling (57 ± 16 vs. 35 ± 12 g/h; P < 0.01). Accordingly, the contribution from plasma glucose oxidation to total carbohydrate oxidation was greater during both running (33 ± 4 vs. 23 ± 3%; P < 0.01) and cycling (36 ± 5 vs. 22 ± 3%; P < 0.01) with CHO ingestion. However, muscle glycogen utilization was not reduced by the ingestion of CHO compared with water during either running (112 ± 32 vs. 141 ± 34 mmol/kg dry mass) or cycling (227 ± 36 vs. 216 ± 39 mmol/kg dry mass). We conclude that, compared with water, 1) the ingestion of carbohydrate during running and cycling enhanced the contribution of plasma glucose oxidation to total carbohydrate oxidation but 2) did not attenuate mixed muscle glycogen utilization during 1 h of continuous submaximal exercise at individual lactate threshold.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Malnutrition is a worldwide problem affecting millions of unborn and young children during the most vulnerable stages of brain development (1). All restriction of protein during the perinatal period of life can alter the development of mammalian fetus and have marked repercussions on development of the Central Nervous System (CNS). The brain is vulnerable to protein malnutrition with altered morphologic and biochemical maturation, leading to impaired functions. The focus of this study is to investigate [U-14C]glycine metabolism in malnourished rats submitted to pre- and postnatal protein deprivation (diet: 8% protein with addition and without addition of L-methionine) on glycine metabolism of rats (normonourished group: 25% protein). It was observed that protein malnutrition alters oxidation to CO2, conversion to lipids and protein synthesis from [U-14C]glycine in cerebellum of malnourished rats without addition of L-methionine on a diet at 7 and 21 days of postnatal life. Our results also indicate that protein malnutrition causes a retardation in the normally ordered progression of brain development, and the malnourished groups have smaller cells, reduction in cell numbers and smaller cerebellar weight comparing to the control group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glicoesfingolipídios (GSL) são constituintes da membrana plasmática e possuem bases de cadeia longa (bases esfingóides) como componente estrutural lipídico. Açúcares podem ser adicionados à ceramida sintetizada de novo (rota 1), sintetizada pela reciclagem da esfingosina (rota 2) e em GSL reciclados através do Golgi (rota 3). A serina palmitoiltransferase (SPT) é a enzima marca-passo e catalisa o primeiro passo na biossíntese de novo destes componentes. A linhagem celular GRX, representativa das células estreladas hepáticas, expressa o fenótipo miofibroblástico e pode ser induzida in vitro a adquirir o fenótipo lipocítico. Ambos fenótipos possuem gangliosídios da série-a (GM2, GM1 e GD1a) bem como o seu precursor GM3, que são expressos como doublets em HPTLC (bandas 1 e 2, respectivamente). Para o estudo da biossíntese dos GSL neste modelo biológico, foram determinadas as condições ideais para a atividade da SPT, e foi avaliada sua atividade na fração microssomal nos dois fenótipos. Também foi determinada a contribuição de cada rota de biossíntese para as duplas bandas. As células foram pré-incubadas com 5mM de -cloroalanina (inibidor da SPT) ou com 25M de fumonisina B1 (inibidor da ceramida sintase) e então, [U-14C]galactose foi adicionada no meio de cultura na presença contínua dos inibidores. Culturas controles (sem inibidores) foram realizadas simultaneamente. Os lipídios foram extraídos, os gangliosídios purificados em colunas Sep-Pack C18 e analisados por HPTLC, a qual foi revelada por auto-radiografia e após, submetida à análise densitométrica. Em ambos fenótipos, a síntese de novo, a reciclagem da esfingosina e a reciclagem pelo Golgi contribuem com a biossíntese dos GSL No miofibroblasto, os doublets dos gangliosídios complexos (GD1a e GM1) são, principalmente, sintetizados pelas rotas de reciclagem; enquanto as bandas do GM2 e do GM3 têm uma participação importante da síntese de novo. No lipócito, as rotas de reciclagem são as mais importantes. Contudo, no lipócito, ambas bandas do GM2 e a banda 2 do GM3 apresentam considerável síntese pela rota de novo. Esta rota tem uma contribuição menor no lipócito do que no miofibroblasto, o que está de acordo com os níveis da atividade da SPT detectados nestes fenótipos. Isto sugere que os fenótipos miofibroblasto e lipócito utilizam pools de ceramida distintos para a síntese de seus GSL e que apresentam importantes diferenças entre as rotas biossintéticas, o que pode se refletir no seu comportamento celular.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biosynthetic origins of the isoprene units of 4-nerolidylcatechol (1), the major constituent of Potomorphe umbellata, have been studied through feeding experiments with [14C]- and [13C]-glucose, and with precursors of the mevalonic acid and triose/pyruvate pathways, namely, [2- 14C]-mevalonolactone and [U-14C]-glyceraldehyde-3- phosphate, respectively. The pattern of incorporation of label from [1- 13C]-glucose into 1 was determined by quantitative 13C NMR spectroscopy. The labelling pattern revealed that the additive was specifically incorporated, and that the isoprene units of the sesquiterpenoid moiety of 4-nerolidylcatechol were derived from both the mevalonic acid and the triose/pyruvate pathways. The results indicate that both plastidic and cytoplasmic pathways are able to provide isopentenyl diphosphate units for the biosynthesis of 1. ©2005 Sociedade Brasileira de Química.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to develop an experimental protocol for endurance swimming periodization training in rats similar to high performance training in humans, and compare it to continuous training. Three groups of male Wistar rats (90 days old) were allocated to Sedentary Control (SC); Continuous Training (CT); and Periodized Experimental Training (PET) groups. PET and CT trained 5 days/week, over five weeks, CT: continuous training supporting a 5% body mass (bm) load for 40 min/day; PET: training subdivided into basic, specific, and taper periods, with overload changed daily (volume-intensity, continuous, and interval training). Total training overload was quantified (% bm X exercise time in training session) and equalized for the two trained groups. Glucose ([ 3H]2-deoxyglucose) uptake, incorporation to glycogen (synthesis), glucose oxidation (CO 2 production), and lactate production from [U- 14C]glucose by soleus muscle strips incubated in presence of insulin (100μU/mL) were evaluated 48h after the last training session. The load equivalent at 5.5mM blood lactate concentration ([La-5.5]) was determined in the incremental test. Lactate production was similar in all groups. PET presented higher glucose uptake (59%) than SC, and higher glycogen synthesis (51 and 22%) and glucose oxidation (147 and 178%) than SC and CT, respectively. CT presented higher glycogen synthesis rates (23%) than SC. Load [La-5.5] was similar between trained groups and higher than SC. PET presented higher values for glucose metabolism than CT and SC. These results open up new perspectives for studying training methods used in high performance sport through swimming exercise in rats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

3-Methylcrotonyl-coenzyme A carboxylase (MCCase) is a mitochondrial biotin-containing enzyme whose metabolic function is not well understood in plants. In soybean (Glycine max) seedlings the organ-specific and developmentally induced changes in MCCase expression are regulated by mechanisms that control the accumulation of MCCase mRNA and the activity of the enzyme. During soybean cotyledon development, when seed-storage proteins are degraded, leucine (Leu) accumulation peaks transiently at 8 d after planting. The coincidence between peak MCCase expression and the decline in Leu content provides correlative evidence that MCCase is involved in the mitochondrial catabolism of Leu. Direct evidence for this conclusion was obtained from radiotracer metabolic studies using extracts from isolated mitochondria. These experiments traced the metabolic fate of [U-14C]Leu and NaH14CO3, the latter of which was incorporated into methylglutaconyl-coenzyme A (CoA) via MCCase. These studies directly demonstrate that plant mitochondria can catabolize Leu via the following scheme: Leu → α-ketoisocaproate → isovaleryl-CoA → 3-methylcrotonyl-CoA → 3-methylglutaconyl-CoA → 3-hydroxy-3-methylglutaryl-CoA → acetoacetate + acetyl-CoA. These findings demonstrate for the first time, to our knowledge, that the enzymes responsible for Leu catabolism are present in plant mitochondria. We conclude that a primary metabolic role of MCCase in plants is the catabolism of Leu.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The possible involvement of potato (Solanum tuberosum L.) starch-branching enzyme I (PSBE-I) in the in vivo synthesis of phosphorylated amylopectin was investigated in in vitro experiments with isolated PSBE-I using 33P-labeled phosphorylated and 3H end-labeled nonphosphorylated α(1→4)glucans as the substrates. From these radiolabeled substrates PSBE-I was shown to catalyze the formation of dual-labeled (3H/33P) phosphorylated branched polysaccharides with an average degree of polymerization of 80 to 85. The relatively high molecular mass indicated that the product was the result of multiple chain-transfer reactions. The presence of α(1→6) branch points was documented by isoamylase treatment and anion-exchange chromatography. Although the initial steps of the in vivo mechanism responsible for phosphorylation of potato starch remains elusive, the present study demonstrates that the enzyme machinery available in potato has the ability to incorporate phosphorylated α(1→4)glucans into neutral polysaccharides in an interchain catalytic reaction. Potato mini tubers synthesized phosphorylated starch from exogenously supplied 33PO43− and [U-14C]Glc at rates 4 times higher than those previously obtained using tubers from fully grown potato plants. This system was more reproducible compared with soil-grown tubers and was therefore used for preparation of 33P-labeled phosphorylated α(1→4)glucan chains.