11 resultados para Tungstenio


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In contemporary industrial, welding processes are widely used, this is the most important process of joining metals used industrially. The welding can be used to build simple structures, like doors and gates for instance, in the same way can be used in situations of high responsibility, such as the nuclear industry and oil industry. Dissimilar welding is a case of welded joints, is characterized by the junction between different materials, for this case, stainless steel and carbon steel that are widely used in steam lines, power plants, nuclear reactors, petrochemical plants. Because their different mechanical and corrosive properties, the join, stainless steel with carbon steel, not only meets environmental requirements and also reduces cost. By using penetrating liquid tests, macrograph, hardness and tensile test was compared the possibility of replacing the current use of 309 rods as filler metal in dissimilar welding between carbon steel and stainless steel by add-on material carbon steel essentially, in this case E7018 coated electrode was used, but without the coating. After analysis of the results and for comparison, was proposed with some certainty that it is possible to replace the addition of materials, thus leading economy in this process widely used in the modern industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Used as catalysts even in organic and inorganic molecules, as additives on catalysts, electrochromic films on smart windows the tungsten trioxide have been largely studied on the lasts decades, but there is just a few about it's luminescence. Using as precursors nitric acid and sodium tungstate the tungsten trioxide were been prepared thru wet process then treating on thermic and hydrothermal treatments. Where been evaluated the effects of methodology, nitric acid concentration, duration and temperature of treatments. The samples were characterized by X-ray diffraction (XRD), Raman scattering spectroscopy (RSS), Fourier transformed infrared spectroscopy, photoluminescence spectroscopy (PLS) and X-ray excited optical luminescence (XEOL). Hydrated phases of tungsten trioxide were obtained through hydrothermal treatments and the non-hydrated phases occur with thermic treatments. The acid concentration has the ability to determine the major phase formed as well the temperature determine the hydratation of the product. With lower temperatures dihydrate phase were preferable formed and with the rise of temperature, the water molecules were lost up to the fractionary hydratation and then the non-hydrated phase with higher temperatures depending on the atmosphere used on the thermal treatment. Doping the system with europium ions even substituting tungsten or in the interstices of the matrix were not been successful, as well the XEOL spectroscopy intensity were null and quite low for ultraviolet and visible excitation photoluminescence because of oxygen defect levels localized into the prohibited band.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Used as catalysts even in organic and inorganic molecules, as additives on catalysts, electrochromic films on smart windows the tungsten trioxide have been largely studied on the lasts decades, but there is just a few about it's luminescence. Using as precursors nitric acid and sodium tungstate the tungsten trioxide were been prepared thru wet process then treating on thermic and hydrothermal treatments. Where been evaluated the effects of methodology, nitric acid concentration, duration and temperature of treatments. The samples were characterized by X-ray diffraction (XRD), Raman scattering spectroscopy (RSS), Fourier transformed infrared spectroscopy, photoluminescence spectroscopy (PLS) and X-ray excited optical luminescence (XEOL). Hydrated phases of tungsten trioxide were obtained through hydrothermal treatments and the non-hydrated phases occur with thermic treatments. The acid concentration has the ability to determine the major phase formed as well the temperature determine the hydratation of the product. With lower temperatures dihydrate phase were preferable formed and with the rise of temperature, the water molecules were lost up to the fractionary hydratation and then the non-hydrated phase with higher temperatures depending on the atmosphere used on the thermal treatment. Doping the system with europium ions even substituting tungsten or in the interstices of the matrix were not been successful, as well the XEOL spectroscopy intensity were null and quite low for ultraviolet and visible excitation photoluminescence because of oxygen defect levels localized into the prohibited band.