993 resultados para Tuberous Sclerosis Complex


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in the TSC1 and TSC2 genes on chromosomes 9 and 16 respectively. Diagnosis is based on clinical features but can be difficult as a result of variable phenotypic expression. With the advantage of mutation analysis in making a diagnosis of TSC, and improved identification of the associated clinical features, there have been few new data on its prevalence and on the proportion of cases due to new mutations. We have performed a retrospective epidemiological study on the prevalence of TSC, the clinical features attributed to it, and the availability of mutational analysis. We identified 73 known patients with TSC (5 deceased): 39 were female and 34 male. Ages ranged from 10 months to 69 years, with a mean age of 27 years 11 months (SD 16y 10mo). The point prevalence of TSC in our study was estimated at I out of 24 956 on the prevalence day (30 April 2004). The majority of patients (42.5%) were diagnosed at less than 15 months of age; 25% were not given a diagnosis on first developing symptoms. In all, 93.2% had epilepsy and 71.2% had a learning disability.* A mutation was identified in 95.8% of those tested (26% TSC1 and 74% TSC2). TSC2 mutations were correlated with a more severe phenotype. The new mutation rate was calculated at 64%. We conclude that the prevalence of TSC is higher than previously calculated. We recommend that all children with epilepsy be assessed for features of TSC. Larger studies will be required to assess the prevalence of mutations in each gene, and genotype-phenotype correlation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Pica and Tuberous sclerosis complex (TSC) are rare disorders. We carried out a population survey of pica in our TSC patient population.

Findings: Pica was identified in four percent of cases of TSC. It was associated with adult onset or persistence into adulthood, epilepsy, severe learning difficulties and anaemia.

Conclusions: Pica in TSC is a rare disorder and a coherent history may be difficult to obtain from patients. The prevalence of pica is likely to be underdiagnosed. Pica is a recognised feature in adults with TSC and prompt recognition of this disorder should allow better management of patients with TSC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberous sclerosis complex (TSC) is a multisystem, autosomal dominant disorder affecting approximately 1 in 6000 births. Developmental brain abnormalities cause substantial morbidity and mortality and often lead to neurological disease including epilepsy, cognitive disabilities, and autism. TSC is caused by inactivating mutations in either TSC1 or TSC2, whose protein products are known inhibitors of mTORC1, an important kinase regulating translation and cell growth. Nonetheless, neither the pathophysiology of the neurological manifestations of TSC nor the extent of mTORC1 involvement in the development of these lesions is known. Murine models would greatly advance the study of this debilitating disorder. This thesis will describe the generation and characterization of a novel brain-specific mouse model of TSC, Tsc2flox/ko;hGFAP-Cre. In this model, the Tsc2 gene has been removed from most neurons and glia of the cortex and hippocampus by targeted Cre-mediated deletion in radial glial neuroprogenitor cells. The Tsc2flox/ko;hGFAP-Cre mice fail to thrive beginning postnatal day 8 and die from seizures around 23 days. Further characterization of these mice demonstrated megalencephaly, enlarged neurons, abnormal neuronal migration, altered progenitor pools, hypomyelination, and an astrogliosis. The similarity of these defects to those of TSC patients establishes this mouse as an excellent model for the study of the neuropathology of TSC and testing novel therapies. We further describe the use of this mouse model to assess the therapeutic potential of the macrolide rapamycin, an inhibitor of mTORC1. We demonstrate that rapamycin administered from postnatal day 10 can extend the life of the mutant animals 5 fold. Since TSC is a neurodevelopmental disorder, we also assessed in utero and/or immediate postnatal treatment of the animals with rapamycin. Amazingly, combined in utero and postnatal rapamycin effected a histologic rescue that was almost indistinguishable from control animals, indicating that dysregulation of mTORC1 plays a large role in TSC neuropathology. In spite of the almost complete histologic rescue, behavioral studies demonstrated that combined treatment resulted in poorer learning and memory than postnatal treatment alone. Postnatally-treated animals behaved similarly to treated controls, suggesting that immediate human treatment in the newborn period might provide the most opportune developmental timepoint for rapamycin administration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberous sclerosis complex (TSC) is a genetic disorder with pleiotropic manifestations caused by heterozygous mutations in either TSC1 or TSC2. One of the less investigated complications of TSC is the formation of aneurysms of the descending aorta, which are characterized on pathologic examination by smooth muscle cell (SMC) proliferation in the aortic media. SMCs were explanted from Tsc2(+/-) mice to investigate the pathogenesis of aortic aneurysms caused by TSC2 mutations. Tsc2(+/-) SMCs demonstrated increased phosphorylation of mammalian target of rapamycin (mTOR), S6 and p70S6K and increased proliferation rates compared with wild-type (WT) SMCs. Tsc2(+/-) SMCs also had reduced expression of SMC contractile proteins compared with WT SMCs. An inhibitor of mTOR signaling, rapamycin, decreased SMC proliferation and increased contractile protein expression in the Tsc2(+/-) SMCs to levels similar to WT SMCs. Exposure to alpha-elastin fragments also decreased proliferation of Tsc2(+/-) SMCs and increased levels of p27(kip1), but failed to increase expression of contractile proteins. In response to artery injury using a carotid artery ligation model, Tsc2(+/-) mice significantly increased neointima formation compared with the control mice, and the neointima formation was inhibited by treatment with rapamycin. These results demonstrate that Tsc2 haploinsufficiency in SMCs increases proliferation and decreases contractile protein expression and suggest that the increased proliferative potential of the mutant cells may be suppressed in vivo by interaction with elastin. These findings provide insights into the molecular pathogenesis of aortic disease in TSC patients and identify a potential therapeutic target for treatment of this complication of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberous sclerosis is an autosomal dominant disorder characterized by the development of aberrant growths in many tissues and organs. Linkage analysis revealed two disease-determining genes on chromosome 9 and chromosome 16. The tuberous sclerosis complex gene-2 (TSC2) on chromosome 16 encodes the tumor suppressor protein tuberin. We have shown earlier that loss of TSC2 is sufficient to induce quiescent cells to enter the cell cycle. Here we show that TSC2-negative fibroblasts exhibit a shortened G1 phase. Although the expression of cyclin E, cyclin A, p21, or Cdc25A is unaffected, TSC2-negative cells express much lower amounts of the cyclin-dependent kinase (CDK) inhibitor p27 because of decreased protein stability. In TSC2 mutant cells the amount of p27 bound to CDK2 is diminished, accompanied with elevated kinase activity. Ectopic expression studies revealed that the aforementioned effects can be reverted by transfecting TSC2 in TSC2-negative cells. High ectopic levels of p27 have cell cycle inhibitory effects in TSC2-positive cells but not in TSC2-negative counterparts, although the latter still depend on CDK2 activity. Loss of TSC2 induces soft agar growth of fibroblasts, a process that cannot be inhibited by high levels of p27. Both phenotypes of TSC2-negative cells, their resistance to the activity of ectopic p27, and the instability of endogenous p27, could be explained by our observation that the nucleoprotein p27 is mislocated into the cytoplasm upon loss of TSC2. These findings provide insights into the molecular mechanism of how loss of TSC2 induces cell cycle entry and allow a better understanding of its tumor suppressor function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberous Sclerosis Complex (TSC) is an autosomal dominant tumor suppressor disorder characterized by hamartomas, or benign growths, in various organ systems. Inactivating mutations in either the TSC1 or the TSC2 gene cause most cases of TSC. Recently, the use of ovarian specific conditional knock-out mouse models has demonstrated a crucial role of the TSC genes in ovarian function. Mice with complete deletion of Tsc1 or Tsc2 showed accelerated ovarian follicle activation and subsequent premature follicular depletion, consistent with the human condition premature ovarian failure (POF). POF is defined in women as the cessation of menses before the age of 40 and elevated levels of follicle stimulating hormone (FSH). The prevalence of POF is estimated to be 1%, affecting a substantial number of women in the general population. Nonetheless, the etiology of most cases of POF remains unknown. Based on the mouse model results, we hypothesized that the human TSC1 and TSC2 genes are likely to be crucial for ovarian development and function. Moreover, since women with TSC already have one inactivated TSC gene, we further hypothesized that they may show a higher prevalence of POF. To test this hypothesis, we surveyed 1000 women with TSC belonging to the Tuberous Sclerosis Alliance, a national support organization. 182 questionnaires were analyzed for information on menstrual and reproductive function, as well as TSC. This self-reported data revealed 8 women (4.4%) with possible POF, as determined by menstrual history report and additional supportive data. This prevalence is much higher than 1% in the general population. Data from all women suggested other reproductive pathology associated with TSC such as a high rate of miscarriage (41.2%) and menstrual irregularity of any kind (31.2%). These results establish a previously unappreciated effect of TSC on women’s reproductive health. Moreover, these data suggest that perturbations in the cellular pathways regulated by the TSC genes may play an important role in reproductive function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Tuberous Sclerosis Complex (TSC) is an autosomal-dominant disease caused by the loss of function of the heterodimeric complex hamartin/tuberin due to TSC1/TSC2 gene mutation. The consequent abnormal activation of mammalian target of rapamycin (mTOR), a serine threonine kinase regulating cellular growth, metabolism and proliferation, is responsible for the structural and functional abnormalities observed in TSC. mTOR inhibitors are a class of drugs specifically targeting the mTOR pathway with promising benefits as a specific targeted treatment of the disease. Areas covered. We have reviewed the literature focusing on the role of mTOR inhibitors in treating TSC-related conditions. They are currently approved for subependymal giant cell astrocytomas, renal angiomyolipomas and more recently for lymphangioleiomyomatosis, but a promising role has been shown also in the other clinical manifestation characteristics of TSC, such as cardiac rhabdomyomas, facial angiofibromas and epilepsy. Expert opinion. mTOR inhibition is considered a disease-modifying therapy and the best approach to prevent the progress of the natural history of the disease. For the first time we have the possibility not only to use a biologically targeted treatment, but also to address different manifestations at the same time, thus significantly improving the therapeutic outlook in this complex disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The perivascular epithelioid cell has been proposed to be the unifying proliferating cell type in a number of lesions such as angiomyolipoma, lymphangiomyomatosis, clear cell sugar tumor and renal capsuloma. With the exception of rare examples of angiomyolipoma, they are non-metastasizing. We report four examples of a new member of this family of perivascular epithelioid cell neoplasms that occur in abdominopelvic location and show metastatic properties. The patients, all women, were aged 19 to 41 years (mean, 32), and presented with a tumor mass involving the serosa of the ileum, uterus or pelvic cavity. Morphologically, the tumors were composed of sheets of large polygonal cells with glycogen-rich clear or eosinophilic cytoplasm and moderately pleomorphic nuclei, traversed by a delicate vasculature, mimicking clear cell carcinoma. There were areas of coagulative necrosis and occasional mitotic figures. Intracytoplasmic brown pigment was present in two cases. Spindly cells, smooth muscle and fat were absent. Lymphovascular invasion was present in all, lymph node metastasis was documented in two and metastasis to the ovary was present in one case. Two patients developed widespread metastatic disease after 10 and 28 months from diagnosis. One patient showed the clinical signs of tuberous sclerosis. In spite of the epithelial-like appearance, the tumor cells were negative for epithelial markers but were strongly positive with the melanogenesis-related marker HMB45. Another melanogenesis marker (MART-1) was positive in two cases. Other markers including S-100 protein, vimentin, muscle-specific actin, desmin and chromogranin A were negative. Thus, these tumors are not readily classifiable in the existing schema of known entities, and show over-lapping morpho-phenotypic features of clear cell sugar tumor of the lung and epithelioid angiomyolipoma. We consider them as sarcomas composed of a pure population of uncommitted perivascular epithelioid cell, that lack modulation toward smooth muscle or adipose cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroimaging using magnetic resonance imaging (MRI) is required for the investigation of surgically intractable epilepsy. In addition to the standard MRI techniques, perfusion sequences can be added to improve visualization of the underlying pathological changes. Also, as arterial spin-labeling (ASL) MRI perfusion does not require contrast administration, it may even be advantageous in these patients. We report here on three patients with epilepsy and tuberous sclerosis who underwent brain MRI with ASL and positron emission tomography (PET), both of which were found to correlate with each other and with electrophysiological data.