1000 resultados para Tritrophic interaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interest in sustainable farming methods that rely on alternatives to conventional synthetic fertilizers and pesticides is increasing. Sustainable farming methods often utilize natural populations of predatory and parasitic species to control populations of herbivores, which may be potential pest species. We investigated the effects of several types of fertilizer, including those typical of sustainable and conventional farming systems, on the interaction between a herbivore and parasitoid. The effects of fertilizer type on percentage parasitism, parasitoid performance, parasitoid attack behaviour and responses to plant volatiles were examined using a model Brassica system, consisting of Brassica oleracea var capitata, Plutella xylostella (Lepidoptera) larvae and Cotesia vestalis (parasitoid). Percentage parasitism was greatest for P. xylostella larvae feeding on plants that had received either a synthetic ammonium nitrate fertilizer or were unfertilized, in comparison to those receiving a composite fertilizer containing hoof and horn. Parasitism was intermediate on plants fertilized with an organically produced animal manure. Male parasitoid tibia length showed the same pattern as percentage parasitism, an indication that offspring performance was maximized on the treatments preferred by female parasitoids for oviposition. Percentage parasitism and parasitoid size were not correlated with foliar nitrogen concentration. The parasitoids did not discriminate between hosts feeding on plants in the four fertilizer treatments in parasitoid behaviour assays, but showed a preference for unfertilized plants in olfactometer experiments. The percentage parasitism and tibia length results provide support for the preference–performance hypothesis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants attacked by leaf herbivores release volatile organic compounds (VOCs) both locally from the wounded site and systemically from non-attacked tissues. These volatiles serve as attractants for predators and parasitoids. This phenomenon is well described for plant leaves, but systemic induction of VOCs in the roots has remained unstudied. We assessed the spatial and temporal activation of the synthesis and release of (E)-β-caryophyllene (EβC) in maize roots upon feeding by larvae of Diabrotica virgifera virgifera, as well as the importance of systemically produced EβC for the attraction of the entomopathogenic nematode Heterorhabditis megidis. The production of EβC was found to be significantly stronger at the site of attack than in non-attacked tissues. A weak, but significant, increase in transcriptional activity of the EβC synthase gene tps23 and a corresponding increase in EβC content were observed in the roots above the feeding site and in adjacent roots, demonstrating for the first time that herbivory triggers systemic production of a volatile within root systems. In belowground olfactometers, the nematodes were significantly more attracted towards local feeding sites than systemically induced roots. The possible advantages and disadvantages of systemic volatile signalling in roots are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined chemometrics-metabolomics approach [excitation–emission matrix (EEM) fluorescence spectroscopy, nuclear magnetic resonance (NMR) and high performance liquid chromatography–mass spectrometry (HPLC–MS)] was used to analyse the rhizodeposition of the tritrophic system: tomato, the plant-parasitic nematode Meloidogyne javanica and the nematode-egg parasitic fungus Pochonia chlamydosporia. Exudates from M. javanica roots were sampled at root penetration (early) and gall development (late). EMM indicated that late root exudates from M. javanica treatments contained more aromatic amino acid compounds than the rest (control, P. chlamydosporia or P. chlamydosporia and M. javanica). 1H NMR showed that organic acids (acetate, lactate, malate, succinate and formic acid) and one unassigned aromatic compound (peak no. 22) were the most relevant metabolites in root exudates. Robust principal component analysis (PCA) grouped early exudates for nematode (PC1) or fungus presence (PC3). PCA found (PC1, 73.31 %) increased acetate and reduced lactate and an unassigned peak no. 22 characteristic of M. javanica root exudates resulting from nematode invasion and feeding. An increase of peak no. 22 (PC3, 4.82 %) characteristic of P. chlamydosporia exudates could be a plant “primer” defence. In late ones in PC3 (8.73 %) the presence of the nematode grouped the samples. HPLC–MS determined rhizosphere fingerprints of 16 (early) and 25 (late exudates) m/z signals, respectively. Late signals were exclusive from M. javanica exudates confirming EEM and 1H NMR results. A 235 m/z signal reduced in M. javanica root exudates (early and late) could be a repressed plant defense. This metabolomic approach and other rhizosphere -omics studies could help to improve plant growth and reduce nematode damage sustainably.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1 Diachasmimorpha krausii is a braconid parasitoid of larval tephritid fruit flies, which feed cryptically within host fruit. At the ovipositor probing stage, the wasp cannot discriminate between hosts that are physiologically suitable or unsuitable for offspring development and must use other cues to locate suitable hosts. 2 To identify the cues used by the parasitoid to find suitable hosts, we offered, to free flying wasps, different combinations of three fruit fly species (Bactrocera tryoni, Bactrocera cacuminata, Bactrocera cucumis), different life stages of those flies (adults and larvae) and different host plants (Solanum lycopersicon, Solanum mauritianum, Cucurbita pepo). In the laboratory, the wasp will readily oviposit into larvae of all three flies but successfully develops only in B. tryoni. Bactrocera tryoni commonly infests S. lycopersicon (tomato), rarely S. mauritianum (wild tobacco) but never C. pepo (zucchini). The latter two plant species are common hosts for B. cacuminata and B. cucumis, respectively. 3 The parasitoid showed little or no response to uninfested plants of any of the test species. The presence of adult B. tryoni, however, increased parasitoid residency time on uninfested tomato. 4 When the three fruit types were all infested with larvae, parasitoid response was strongest to tomato, regardless of whether the larvae were physiologically suitable or unsuitable for offspring development. By contrast, zucchini was rarely visited by the wasp, even when infested with B. tryoni larvae. 5 Wild tobacco was infrequently visited when infested with B. cacuminata larvae but was more frequently visited, with greater parasitoid residency time and probing, when adult flies (either B. cacuminata or B. tryoni) were also present. 6 We conclude that herbivore-induced, nonspecific host fruit wound volatiles were the major cue used by foraging D. krausii. Although positive orientation to infested host plants is well known from previous studies on opiine braconids, the failure of the wasp to orientate to some plants even when infested with physiologically suitable larvae, and the secondary role played by adult fruit flies in wasp host searching, are newly-identified mechanisms that may aid parasitoid host location in environments where both physiologically suitable and unsuitable hosts occur.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

P>1Organisms with low mobility, living within ephemeral environments,need to find vehicles that can disperse them reliably to new environments. The requirement for specificity in this passenger-vehicle relationship is enhanced within a tritrophic interaction when the environment of passenger and vehicle is provided by a third organism. Such relationships pose many interesting questions about specificity within a tritrophic framework. 2. Central to understanding how these tritrophic systems have evolved, is knowing how they function now. Determining the proximal cues and sensory modalities used by passengers to find vehicles and to discriminate between reliable and non-reliable vehicles is, therefore, essential to this investigation. 3. The ancient, co-evolved and highly species-specific nursery pollination mutualism between figs and fig wasps is host to species-specific plant-parasitic nematodes which use fig wasps to travel between figs. Since individual globular fig inflorescences, i.e. syconia, serve as incubators for hundreds of developing pollinating and parasitic wasps, a dispersal-stage nematode within such a chemically,complex and physically crowded environment is faced with the dilemma of choosing the right vehicle for dispersal into a new fig. Such a system therefore affords excellent opportunities to investigate mechanisms that contribute to the evolution of specificity between the passenger and the vehicle. 4. In this study of fig-wasp-nematode tritrophic interactions in Ficus racemosa within which seven wasp species can breed, we demonstrate using two-choice as well as cafeteria assays that plant-parasitic nematodes (Schistonchus racemosa) do not hitch rides randomly on available eclosing wasps within the fig syconium, but are specifically attracted, at close range, i.e. 3 mm distance, to only that vehicle which can quickly, within a few hours, reliably transfer it to another fig. This vehicle is the female pollinating wasp. Male wasps and female parasitic wasps are inappropriate vehicles since the former are wingless and die within the fig, while the latter never enter another fig. Nematodes distinguished between female pollinating wasps and other female parasitic wasps using volatiles and cuticular hydrocarbons. Nematodes could not distinguish between cuticular hydrocarbons of male and female pollinators but used other cues, such as volatiles, at close range, to find female pollinating wasps with which they have probably had a long history of chemical adaptation. 5. This study opens up new questions and hypotheses about the evolution and maintenance of specificity in fig-wasp-nematode tritrophic interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In response to herbivory by insects, several plant species have been shown to produce volatiles that attract the natural enemies of those herbivores. Using a Y-tube olfactometer, we investigated responses of the aphid parasitoid Diaeretiella rapae MacIntosh (Hymenoptera: Aphidiidae) to volatiles from Arabidopsis thaliana Columbia (Brassicaceae) plants that were either undamaged, infested by the peach-potato aphid, Myzus persicae Sulzer (Homoptera: Aphididae), or mechanically damaged, as well as to volatiles from just the aphid or its honeydew. In dual-choice experiments, female D. rapae given oviposition experience on A. thaliana infested with M. persicae were significantly attracted to volatiles from A. thaliana infested with M. persicae over volatiles from undamaged A. thaliana and similarly were significantly attracted to plants that had been previously infested by M. persicae, but from which the aphids were removed, over undamaged plants. Diaeretiella rapae did not respond to volatiles from M. persicae alone, their honeydew, or plants mechanically damaged with either a pin or scissors. We conclude that an interaction between the plant and the aphid induces A. thaliana to produce volatiles, which D. rapae can learn and respond to. Poor responses of D. rapae to volatiles from an A. thaliana plant that had two leaves infested with M. persicae, with the two infested leaves being removed before testing, suggested the possibility that, at this stage of infestation, the majority of volatile production induced by M. persicae may be localized to the infested tissues of the plant. We conclude that this tritrophic interaction is a suitable model system for future investigations of the biochemical pathways involved in the production of aphid-induced volatiles attractive to natural enemies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herbivore-attacked plants produce specific volatile substances that represent important cues for host finding by natural enemies. The fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a voracious herbivore and usually feed on maize in all periods of the day. Given that plant needs light to synthesize de novo herbivore-induced volatiles, volatile blend may be changed depending on time of the day the plant is induced, what could interfere in natural enemy foraging. In this sense, the current study aimed to investigate differential attractiveness of maize elicited by fall armyworm regurgitant under light and dark conditions to its specialist larval parasitoid Campoletis flavicincta (Ashmead) (Hymenoptera: Ichneumonidae). All bioassays were conducted in Y-tube olfactometer to assess parasitoid response to odors from undamaged maize, mechanical damage, and regurgitant-treated plants at 0-1, 5-6, and 24-25 h after induction. The results showed that na < ve wasps were attracted to volatiles emitted by nocturnal regurgitant-treated maize at 5-6 h, but not to odors from diurnal regurgitant-treated plants. The differential attractiveness is likely due to blend composition as nocturnal regurgitant-treated plants emit aromatic compounds and the homoterpene (3E)-4,8-dimethyl-1,3,7-nonatriene in larger amounts than diurnal-treated plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops. RESULTS The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction. CONCLUSION Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores. © 2014 Society of Chemical Industry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Elevated jasmonic acid (JA) concentrations in response to herbivory can induce wounded plants to produce defences against herbivores. In laboratory and field experiments we compared the effects of exogenous JA treatment to two closely related cabbage species on the host-searching and oviposition preference of the diamondback moth (DBM), Plutella xylostella. JA-treated Chinese cabbage (Brassica campestris) was less attractive than untreated Chinese cabbage to ovipositing DBM, while JA-treatment of common cabbage (B. oleracea) made plants more attractive than untreated controls for oviposition by this insect. Similar effects were observed when plants of the two species were damaged by DBM larvae. In the absence of insect-feeding, or JA application, Chinese cabbage is much more attractive to DBM than common cabbage. Inducible resistance therefore appears to occur in a more susceptible plant and induced susceptibility appears to occur in a more resistant plant, suggesting a possible balance mechanism between constitutive and inducible defences to a specialist herbivore.