998 resultados para Transformation, Bacterial


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Escherichia coli mu operon was subcloned into a pKK233-2 vector containing rat glutathione S-transferase (GST) 5-5 cDNA and the plasmid thus obtained was introduced into Salmonella typhimurium TA1535. The newly developed strain S.typhimurium NM5004, was found to have 52-fold greater GST activity than the original umu strain S.typhimurium TA1535/pSK1002. We compared sensitivities of these two tester strains, NM5004 and TA1535/ pSK1002, for induction of umuC gene expression with several dihaloalkanes which are activated or inactivated by GST 5-5 activity. The induction of umuC gene expression by these chemicals was monitored by measuring the cellular P-galactosidase activity produced by umuC'lacZ fusion gene in these two tester strains. Ethylene dibromide, 1-bromo-2-chloroethane, 1,2-dichloroethane, and methylene dichloride induced umuC gene expression more strongly in the NM5004 strain than the original strain, 4-Nitroquinoline 1-oxide and N-methyl-N'-nitro-N-nitrosoguanidine were found to induce umuC gene expression to similar extents in both strains. In the case of 1-nitropyrene and 2-nitrofluorene, however, NM5004 strain showed weaker umuC gene expression responses than the original TA1535/ pSK1002 strain, 1,2-Epoxy-3-(4'-nitrophenoxy)propane, a known substrate for GST 5-5, was found to inhibit umuC induction caused by 1-bromo-2-chloroethane. These results indicate that this new tester NM5004 strain expressing a mammalian GST theta class enzyme may be useful for studies of environmental chemicals proposed to be activated or inactivated by GST activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inactivation by allelic exchange in clinical isolates of the emerging nosocomial pathogen Enterococcus faecium has been hindered by lack of efficient tools, and, in this study, transformation of clinical isolates was found to be particularly problematic. For this reason, a vector for allelic replacement (pTEX5500ts) was constructed that includes (i) the pWV01-based gram-positive repAts replication region, which is known to confer a high degree of temperature intolerance, (ii) Escherichia coli oriR from pUC18, (iii) two extended multiple-cloning sites located upstream and downstream of one of the marker genes for efficient cloning of flanking regions for double-crossover mutagenesis, (iv) transcriptional terminator sites to terminate undesired readthrough, and (v) a synthetic extended promoter region containing the cat gene for allelic exchange and a high-level gentamicin resistance gene, aph(2'')-Id, to distinguish double-crossover recombination, both of which are functional in gram-positive and gram-negative backgrounds. To demonstrate the functionality of this vector, the vector was used to construct an acm (encoding an adhesin to collagen from E. faecium) deletion mutant of a poorly transformable multidrug-resistant E. faecium endocarditis isolate, TX0082. The acm-deleted strain, TX6051 (TX0082Deltaacm), was shown to lack Acm on its surface, which resulted in the abolishment of the collagen adherence phenotype observed in TX0082. A mobilizable derivative (pTEX5501ts) that contains oriT of Tn916 to facilitate conjugative transfer from the transformable E. faecalis strain JH2Sm::Tn916 to E. faecium was also constructed. Using this vector, the acm gene of a nonelectroporable E. faecium wound isolate was successfully interrupted. Thus, pTEX5500ts and its mobilizable derivative demonstrated their roles as important tools by helping to create the first reported allelic replacement in E. faecium; the constructed this acm deletion mutant will be useful for assessing the role of acm in E. faecium pathogenesis using animal models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shock waves are one of the most competent mechanisms of energy dissipation observed in nature. We have developed a novel device to generate controlled micro-shock waves using an explosive-coated polymer tube. In this study, we harnessed these controlled micro-shock waves to develop a unique bacterial transformation method. The conditions were optimized for the maximum transformation efficiency in Escherichia coli. The maximum transformation efficiency was obtained when we used a 30 cm length polymer tube, 100 mu m thick metal foil, 200 mM CaCl(2), 1 ng/mu l plasmid DNA concentration, and 1 x 10(9) cell density. The highest transformation efficiency achieved (1 x 10(-5) transformants/cell) was at least 10 times greater than the previously reported ultrasound-mediated transformation (1 x 10(-6) transformants/cell). This method was also successfully employed for the efficient and reproducible transformation of Pseudomonas aeruginosa and Salmonella typhimurium. This novel method of transformation was shown to be as efficient as electroporation with the added advantage of better recovery of cells, reduced cost (40 times cheaper than a commercial electroporator), and growth phase independent transformation. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A gene is a unit of heredity in a living organism. It normally resides on a stretch of DNA that codes for a type of protein or for an RNA chain that has a function in the organism. All living things depend on genes, as they specify all proteins and functional RNA chains. Genes hold the information to build and maintain an organism’s cells and pass genetic traits to offspring. The gene has to be transferred to bacteria or eukaryotic cells for basic and applied molecular biology studies. Bacteria can uptake exogenous genetic material by three ways: conjugation, transduction and transformation. Genetic material is naturally transferred to bacteria in case of conjugation and transferred through bacteriophage in transduction. Transformation is the acquisition of exogenous genetic material through cell wall. The ability of bacteria of being transformed is called competency and those bacteria which have competency are competent cells. Divalent Calcium ions can make the bacteria competent and a heat shock can cause the bacteria to uptake DNA. But the heat shock method cannot be used for all the bacteria. In electroporation, a brief electric shock with an electric field of 10-20kV/cmmakes pores in the cell wall, facilitates the DNA to enter into the bacteria. Microprecipitates, microinjection, liposomes, and biological vectors are also used to transfer polar molecules like DNA into host cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our understanding of the evolution of microbial pathogens has been advanced by the discovery of "islands" of DNA that differ from core genomes and contain determinants of virulence [1, 2]. The acquisition of genomic islands (GIs) by horizontal gene transfer (HGT) is thought to have played a major role in microbial evolution. There are, however, few practical demonstrations of the acquisition of genes that control virulence, and, significantly, all have been achieved outside the animal or plant host. Loss of a GI from the bean pathogen Pseudomonas syringae pv. phaseolicola (Pph) is driven by exposure to the stress imposed by the plant's resistance response [3]. Here, we show that the complete episomal island, which carries pathogenicity genes including the effector avrPphB, transfers between strains of Pph by transformation in planta and inserts at a specific att site in the genome of the recipient. Our results show that the evolution of bacterial pathogens by HGT may be achieved via transformation, the simplest mechanism of DNA exchange. This process is activated by exposure to plant defenses, when the pathogen is in greatest need of acquiring new genetic traits to alleviate the antimicrobial stress imposed by plant innate immunity [4].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioremediation is a potential option to treat 1, 1, 1-trichloro-2, 2 bis (4-chlorophenyl) ethane (DDT) contaminated sites. In areas where suitable microbes are not present, the use of DDT resistant microbial inoculants may be necessary. It is vital that such inoculants do not produce recalcitrant breakdown products e.g. 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE). Therefore, this work aimed to screen DDT-contaminated soil and compost materials for the presence of DDT-resistant microbes for use as potential inoculants. Four compost amended soils, contaminated with different concentrations of DDT, were used to isolate DDT-resistant microbes in media containing 150 mg I -1 DDT at three temperatures (25, 37 and 55°C). In all soils, bacteria were more sensitive to DDT than actinomycetes and fungi. Bacteria isolated at 55°C from any source were the most DDT sensitive. However DDT-resistant bacterial strains showed more promise in degrading DDT than isolated fungal strains, as 1, 1-dichloro 2, 2-bis (4-chlorophenyl) ethane (DDD) was a major bacterial transformation product, while fungi tended to produce more DDE. Further studies on selected bacterial isolates found that the most promising bacterial strain (Bacillus sp. BHD-4) could remove 51% of DDT from liquid culture after 7 days growth. Of the amount transformed, 6% was found as DDD and 3% as DDE suggesting that further transformation of DDT and its metabolites occurred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HSP22 is a member of a small HSP subfamily contributing to the growth, transformation and apoptosis of the cell as well as acting as a molecular chaperone. In the present study, CfHSP22 cDNA was cloned from Chlamys farreri by the rapid amplification of cDNA ends technique. The full-length cDNA of CfHSP22 was of 1279 bp, consisting of a 5'-terminal untranslated region (5'UTR) of 122 bp, a 3'UTR of 581 bp with a canonical polyadenylation signal sequence AATAAA and a poly( A) tail, and an open reading frame of 576 bp encoding a polypeptide with a molecular mass of 22.21 kDa and a predicted isoelectric point of 9.69. There was an alpha-crystallin domain, a hallmark of the sHSP subfamily, in the C-terminus, and the deduced amino acid sequence of CfHSP22 showed high similarity to previously identified HSP22s. CfHSP22 was constitutively expressed in the haemocyte, muscle, kidney, gonad, gill, heart and hepatopancreas, and the expression level in the hepatopancreas was higher than that in the other tissues. CfHSP22 transcription was up-regulated and reached a maximal level at 12 h after the bacterial challenge, and then declined progressively to the original level at 48 h. These results suggested that CfHSP22 perhaps play a critical role in response to the bacterial challenge in haemocytes of scallop C. farreri.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les réchauffements climatiques associés aux activités anthropiques ont soumis les écosystèmes arctiques à des changements rapides qui menacent leur stabilité à court terme. La diminution dramatique de la banquise arctique est une des conséquences les plus concrètes de ce réchauffement. Dans ce contexte, comprendre et prédire comment les systèmes arctiques évolueront est crucial, surtout en considérant comment les flux de carbone (C) de ces écosystèmes - soit des puits nets, soit des sources nettes de CO2 pour l'atmosphère - pourraient avoir des répercussions importantes sur le climat. Le but de cette thèse est de dresser un portrait saisonnier de l’activité bactérienne afin de déterminer l’importance de sa contribution aux flux de carbone en Arctique. Plus spécifiquement, nous caractérisons pour la première fois la respiration et le recours à la photohétérotrophie chez les microorganismes du golfe d’Amundsen. Ces deux composantes du cycle du carbone demeurent peu décrites et souvent omises des modèles actuels, malgré leur rôle déterminant dans les flux de C non seulement de l’Arctique, mais des milieux marins en général. Dans un premier temps, nous caractérisons la respiration des communautés microbiennes (RC) des glaces de mer. La connaissance des taux de respiration est essentielle à l’estimation des flux de C, mais encore limitée pour les milieux polaires. En effet, les études précédentes dans le golfe d’Amundsen n’ont pas mesuré la RC. Par la mesure de la respiration dans les glaces, nos résultats montrent des taux élevés de respiration dans la glace, de 2 à 3 fois supérieurs à la colonne d'eau, et une production bactérienne jusqu’à 25 fois plus importante. Ces résultats démontrent que la respiration microbienne peut consommer une proportion significative de la production primaire (PP) des glaces et pourrait jouer un rôle important dans les flux biogéniques de CO2 entre les glaces de mer et l’atmosphère (Nguyen et Maranger, 2011). Dans un second temps, nous mesurons la respiration des communautés microbiennes pélagiques du golfe d’Amundsen pendant une période de 8 mois consécutif, incluant le couvert de glace hivernal. En mesurant directement la consommation d'O2, nous montrons une RC importante, mesurable tout au long de l’année et dépassant largement les apports en C de la production primaire. Globalement, la forte consommation de C par les communautés microbiennes suggère une forte dépendance sur recyclage interne de la PP locale. Ces observations ont des conséquences importantes sur notre compréhension du potentiel de séquestration de CO2 par les eaux de l’Océan Arctique (Nguyen et al. 2012). Dans un dernier temps, nous déterminons la dynamique saisonnière de présence (ADN) et d’expression (ARN) du gène de la protéorhodopsine (PR), impliqué dans la photohétérotrophie chez les communautés bactérienne. Le gène de la PR, en conjonction avec le chromophore rétinal, permet à certaines bactéries de capturer l’énergie lumineuse à des fins énergétiques ou sensorielles. Cet apport supplémentaire d’énergie pourrait contribuer à la survie et prolifération des communautés qui possèdent la protéorhodopsine. Bien que détectée dans plusieurs océans, notre étude est une des rares à dresser un portrait saisonnier de la distribution et de l’expression du gène en milieu marin. Nous montrons que le gène de la PR est présent toute l’année et distribué dans des communautés diversifiées. Étonnamment, l’expression du gène se poursuit en hiver, en absence de lumière, suggérant soit qu’elle ne dépend pas de la lumière, ou que des sources de photons très localisées justifie l’expression du gène à des fins sensorielles et de détection (Nguyen et al., soumis au journal ISME). Cette thèse contribue à la compréhension du cycle du C en Arctique et innove par la caractérisation de la respiration et de l’efficacité de croissance des communautés microbiennes pélagiques et des glaces de mer. De plus, nous montrons pour la première fois une expression soutenue de la protéorhodopsine en Arctique, qui pourrait moduler la consommation de C par la respiration et justifier son inclusion éventuelle dans les modélisations du cycle du C. Dans le contexte des changements climatiques, il est clair que l'importance de l’activité bactérienne a été sous-estimée et aura un impact important dans le bilan de C de l'Arctique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here the construction and characterisation of a BAC library from the maize flint inbred line F2, widely used in European maize breeding programs. The library contains 86,858 clones with an average insert size of approximately 90 kb, giving approximately 3.2-times genome coverage. High-efficiency BAC cloning was achieved through the use of a single size selection for the high-molecular-weight genomic DNA, and co-transformation of the ligation with yeast tRNA to optimise transformation efficiency. Characterisation of the library showed that less than 0.5% of the clones contained no inserts, while 5.52% of clones consisted of chloroplast DNA. The library was gridded onto 29 nylon filters in a double-spotted 8 × 8 array, and screened by hybridisation with a number of single-copy and gene-family probes. A 3-dimensional DNA pooling scheme was used to allow rapid PCR screening of the library based on primer pairs from simple sequence repeat (SSR) and expressed sequence tag (EST) markers. Positive clones were obtained in all hybridisation and PCR screens carried out so far. Six BAC clones, which hybridised to a portion of the cloned Rp1-D rust resistance gene, were further characterised and found to form contigs covering most of this complex resistance locus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial transformation of phosphorus (P) compounds in soil is largely dependent on soil microbial community function, and is therefore sensitive to anthropogenic disturbances such as fertilization or cropping systems. However, the effect of soil management on the transcription of bacterial genes that encode phosphatases, such as phoD, is largely unknown. This greenhouse study examined the effect of long-term management and P amendment on potential alkaline phosphatase (ALP) activity and phoD gene (DNA) and transcript (RNA) abundance. Soil samples (0–15 cm) were collected from the Glenlea Long-term Rotation near Winnipeg, Manitoba, to compare organic, conventional and prairie management systems. In the greenhouse, pots of soil from each management system were amended with P as either soluble mineral fertilizer or cattle manure and then planted with Italian ryegrass (Lolium multiforum). Soils from each pot were sampled for analysis immediately and after 30 and 106 days. Significant differences among the soil/P treatments were detected for inorganic P, but not the organic P in NaHCO3-extracts. At day 0, ALP activity was similar among the soil/P treatments, but was higher after 30 days for all P amendments in soil from organically managed plots. In contrast, ALP activity in soils under conventional and prairie management responded to increasing rates of manure only, with significant effects from medium and high manure application rates at 30 and 106 days. Differences in ALP activity at 30 days corresponded to the abundance of bacterial phoD genes, which were also significantly higher in soils under organic management. However, this correlation was not significant for transcript abundance. Next-generation sequencing allowed the identification of 199 unique phoD operational taxonomic units (OTUs) from the metagenome (soil DNA) and 35 unique OTUs from the metatranscriptome (soil RNA), indicating that a subset of phoD genes was being transcribed in all soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural rubber (NR) is a renewable polymer with a wide range of applications, which is constantly tailored, further increasing its utilizations. The tensile strength is one of its most important properties susceptible of being enhanced by the simple incorporation of nanofibers. The preparation and characterization of natural-rubber based nanocomposites reinforced with bacterial cellulose (BC) and bacterial cellulose coated with polystyrene (BCPS), yielded high performance materials. The nanocomposites were prepared by a simple and green process, and characterized by tensile tests, dynamical mechanical analysis (DMA), scanning electron microscopy (SEM), and swelling experiments. The effect of the nanofiber content on morphology, static, and dynamic mechanical properties was also investigated. The results showed an increase in the mechanical properties, such as Young's modulus and tensile strength, even with modest nanofiber loadings. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present invention describes a method for transforming chemolithotrophic acidophilic bacteria using electroporation technology. The proposed method allows transforming a bacterial line using a transformation vector, the pAF vector, which contains an origin of vegetative replication that allows the vector to replicate inside the bacteria without altering the natural physiological functions of the latter. Also disclosed is the use of the bacteria modified according to the invention in bioleaching processes of sulphated copper, gold, uranium, nickel, zinc and cobalt ore, inter alia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)