4 resultados para Toxicogenetics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tobacco smoking, alcohol drinking, and occupational exposures to polycyclic aromatic hydrocarbons are the major proven risk factors for human head and neck squamous-cell cancer (HNSCC). Major research focus on gene-environment interactions concerning HNSCC has been on genes encoding enzymes of metabolism for tobacco smoke constituents and repair enzymes. To investigate the role of genetically determined individual predispositions in enzymes of xenobiotic metabolism and in repair enzymes under the exogenous risk factor tobacco smoke in the carcinogenesis of HNSCC, we conducted a case-control study on 312 cases and 300 noncancer controls. We focused on the impact of 22 sequence variations in CYP1A1, CYP1B1, CYP2E1, ERCC2/XPD, GSTM1, GSTP1, GSTT1, NAT2, NQO1, and XRCC1. To assess relevant main and interactive effects of polymorphic genes on the susceptibility to HNSCC we used statistical models such as logic regression and a Bayesian version of logic regression. In subgroup analysis of nonsmokers, main effects in ERCC2 (Lys751Gln) C/C genotype and combined ERCC2 (Arg156Arg) C/A and A/A genotypes were predominant. When stratifying for smokers, the data revealed main effects on combined CYP1B1 (Leu432Val) C/G and G/G genotypes, followed by CYP1B1 (Leu432Val) G/G genotype and CYP2E1 (-70G>T) G/T genotype. When fitting logistic regression models including relevant main effects and interactions in smokers, we found relevant associations of CYP1B1 (Leu432Val) C/G genotype and CYP2E1 (-70G>T) G/T genotype (OR, 10.84; 95% CI, 1.64-71.53) as well as CYP1B1 (Leu432Val) G/G genotype and GSTM1 null/null genotype (OR, 11.79; 95% CI, 2.18-63.77) with HNSCC. The findings underline the relevance of genotypes of polymorphic CYP1B1 combined with exposures to tobacco smoke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microparticles found in the air may be associated with organic matter that contains several compounds, such as Polycyclic Aromatic Hydrocarbons (PAHs) and nitro-PAHs, and may pose a significant risk to human health, possibly leading to DNA mutations and cancers. This study associated genotoxicity assays for evaluating human exposure with the atmospheric air of two urban areas in southern Brazil, that received different atmospheric contributions. Site 1 was under urban-industrial influence and the other was a non-industrial reference, Site 2. Organic extracts from the airborne particulate matter were tested for mutagenicity via the Salmonella/microsome assay and analyzed for PAH composition. Cells samples of people residing in these two cities were evaluated using the comet and micronucleus assay (MN).Concentrations of the individual PAHs ranged from 0.01ng/m3 (benzo[a]anthracene) to 5.08ng/m3 (benzo[ghi]perylene). As to mutagenicity analysis of airborne, Site 1 presented all the mutagenic responses, which varied from 3.2±1.22rev/m3 (TA98 no S9) to 32.6±2.05rev/m3 (TA98, S9), while Site 2 ranged from negative to minimal responses. Site 1 presented a high quantity of nitro and amino derivatives of PAHs, and peaked at 56.0±3.68rev/μg (YG1024 strain). The two groups presented very low DNA damage levels without intergroup difference. Although Site 1 presented high mutagenic responses in the air samples, high PAH levels, healthy people exposed to this environment did not show significative damage in their genetic material. However, the evaluation of different environmental and genetic damage in such population is necessary to monitor possible damages. © 2013 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large inter-individual variability in drug response and toxicity, as well as in drug concentrations after application of the same dosage, can be of genetic, physiological, pathophysiological, or environmental origin. Absorption, distribution and metabolism of a drug and interactions with its target often are determined by genetic differences. Pharmacokinetic and pharmacodynamic variations can appear at the level of drug metabolizing enzymes (e.g., the cytochrome P450 system), drug transporters, drug targets or other biomarker genes. Pharmacogenetics or toxicogenetics can therefore be relevant in forensic toxicology. This review presents relevant aspects together with some examples from daily routines.