319 resultados para Thiopurine Methyltransferase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chloroethylnitrosourea (CNU) alkylating agents are commonly used for cancer chemotherapy, but their usefulness is limited by severe bone marrow toxicity that causes the cumulative depletion of all hematopoietic lineages (pancytopenia). Bone marrow CNU sensitivity is probably due to the inefficient repair of CNU-induced DNA damage; relative to other tissues, bone marrow cells express extremely low levels of the O6-methylguanine DNA methyltransferase (MGMT) protein that repairs cytotoxic O6-chloroethylguanine DNA lesions. Using a simplified recombinant retroviral vector expressing the human MGMT gene under control of the phosphoglycerate kinase promoter (PGK-MGMT) we increased the capacity of murine bone marrow-derived cells to repair CNU-induced DNA damage. Stable reconstitution of mouse bone marrow with genetically modified, MGMT-expressing hematopoietic stem cells conferred considerable resistance to the cytotoxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a CNU commonly used for chemotherapy. Bone marrow harvested from mice transplanted with PGK-MGMT-transduced cells showed extensive in vitro BCNU resistance. Moreover, MGMT expression in mouse bone marrow conferred in vivo resistance to BCNU-induced pancytopenia and significantly reduced BCNU-induced mortality due to bone marrow hypoplasia. These data demonstrate that increased DNA alkylation repair in primitive hematopoietic stem cells confers multilineage protection from the myelosuppressive effects of BCNU and suggest a possible approach to protecting cancer patients from CNU chemotherapy-related toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular function of the menin tumor suppressor protein, product of the MEN1 gene mutated in familial multiple endocrine neoplasia type 1, has not been defined. We now show that menin is associated with a histone methyltransferase complex containing two trithorax family proteins, MLL2 and Ash2L, and other homologs of the yeast Set1 assembly. This menin-associated complex methylates histone H3 on lysine 4. A subset of tumor-derived menin mutants lacks the associated histone methyltransferase activity. In addition, menin is associated with RNA polymerase II whose large subunit carboxyl-terminal domain is phosphorylated on Ser5. Men1 knockout embryos and cells show decreased expression of the homeobox genes Hoxc6 and Hoxc8. Chromatin immunoprecipitation experiments reveal that menin is bound to the Hoxc8 locus. These results suggest that menin activates the transcription of differentiation-regulating genes by covalent histone modification, and that this activity is related to tumor suppression by MEN1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structures of human phenylethanolamine N-methyltransferase in complex with S-adenosyl-L-homocysteine (7, AdoHcy) and either 7-iodo-1,2,3,4-tetrahydroisoquinoline (2) or 8,9-dichloro-2,3,4,5-tetrahydro-1H-2-benzazepine (3, LY134046) were determined and compared with the structure of the enzyme complex with 7 and 7-aminosulfonyl-1,2,3,4-tetrahydroisoquinoline (1, SK&F 29661). The enzyme is able to accommodate a variety of chemically disparate functional groups on the aromatic ring of the inhibitors through adaptation of the binding pocket for this substituent and by subtle adjustments of the orientation of the inhibitors within the relatively planar binding site. In addition, the interactions formed by the amine nitrogen of all three inhibitors reinforce the hypothesis that this functional group mimics the beta-hydroxyl of norepinephrine rather than the amine. These studies provide further clues for the development of improved inhibitors for use as pharmacological probes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The X-ray structure of human phenylethanolamine N-methyltransferase (hPNMT) complexed. with its product, S-adenoSyl-L-homocysteine (4), and the most potent inhibitor reported to date, SK&F 64139 (7), was used to identify the residues involved in inhibitor binding. Four of these residues, Va153, Lys57, Glu219 and Asp267, were replaced, in turn, with alanine. All variants had increased K-m values for phenylethanolamine (10), but only D267A showed a noteworthy (20-fold) decrease in its k(cat) value. Both WT hPNMT and D267A had similar k(cat) values for a rigid analogue, anti-9-amino-6-(trifluoromethyl)benzonorbornene (12), suggesting that Asp267 plays an important role in positioning the substrate but does not participate directly in catalysis. The K-i values for the binding of inhibitors such as 7 to the E219A and D267A variants increased by 2-3 orders of magnitude. Further, the inhibitors were shown to bind up to 50-fold more tightly in the presence of S-adenoSyl-(L)-methionine (3), suggesting that the binding of the latter brings about a conformational change in the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3-Fluoromethyl-7-(N-substituted aminosulfonyl)-1,2,3,4-tetrahydroisoquinolines (14, 16, and 18-22) are highly potent and selective inhibitors of phenylethanolamine N-methyltransferase (PNMT). Molecular modeling studies with 3-fluoromethyl-7-(N-alkyl aminosulfonyl)-1,2,3,4-tetrahydroisoquinolines, such as 16, suggested that the sulfonamide -NH-could form a hydrogen bond with the side chain of Lys57. However, SAR studies and analysis of the crystal structure of human PNMT (hPNMT) in complex with 7 indicated that the sulfonamide oxygens, and not the sulfonamide -NH-, formed favorable interactions with the enzyme. Thus, we hypothesized that replacement of the sulfonamide -NH-with a methylene group could result in compounds that would retain potency at PNMT and that would have increased lipophilicity, thus increasing the likelihood they will cross the blood brain barrier. A series of 3-fluoromethyl-7-sulfonyl-1,2,3,4-tetrahydroisoquinolines (23-30) were synthesized and evaluated for their PNMT inhibitory potency and affinity for the R2-adrenoceptor. A comparison of these compounds with their isosteric sulfonamides (14, 16, and 18-22) showed that the sulfones were more lipophilic but less potent than their corresponding sulfonamides. Sulfone 24 (hPNMT K-i = 1.3 mu M) is the most potent compound in this series and is quite selective for PNMT versus the R2-adrenoceptor, but 24 is less potent than the corresponding sulfonamide, 16 (hPNMT K-i = 0.13 mu M). We also report the crystal structure of hPNMT in complex with sulfonamide 15, from which a potential hydrogen bond acceptor within the hPNMT active site has been identified, the main chain carbonyl oxygen of Asn39. The interaction of this residue with the sulfonamide -NH-is likely responsible for much of the enhanced inhibitory potency of the sulfonamides versus the sulfones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background - The Met allele of the catechol-O-methyltransferase (COMT) valine-to-methionine (Val158Met) polymorphism is known to affect dopamine-dependent affective regulation within amygdala-prefrontal cortical (PFC) networks. It is also thought to increase the risk of a number of disorders characterized by affective morbidity including bipolar disorder (BD), major depressive disorder (MDD) and anxiety disorders. The disease risk conferred is small, suggesting that this polymorphism represents a modifier locus. Therefore our aim was to investigate how the COMT Val158Met may contribute to phenotypic variation in clinical diagnosis using sad facial affect processing as a probe for its neural action. Method - We employed functional magnetic resonance imaging to measure activation in the amygdala, ventromedial PFC (vmPFC) and ventrolateral PFC (vlPFC) during sad facial affect processing in family members with BD (n=40), MDD and anxiety disorders (n=22) or no psychiatric diagnosis (n=25) and 50 healthy controls. Results - Irrespective of clinical phenotype, the Val158 allele was associated with greater amygdala activation and the Met allele with greater signal change in the vmPFC and vlPFC. Signal changes in the amygdala and vmPFC were not associated with disease expression. However, in the right vlPFC the Met158 allele was associated with greater activation in all family members with affective morbidity compared with relatives without a psychiatric diagnosis and healthy controls. Conclusions - Our results suggest that the COMT Val158Met polymorphism has a pleiotropic effect within the neural networks subserving emotional processing. Furthermore the Met158 allele further reduces cortical efficiency in the vlPFC in individuals with affective morbidity. © 2010 Cambridge University Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite intense investigation, mechanisms that facilitate the emergence of the pre-eclampsia phenotype in women are still unknown. Placental hypoxia, hypertension, proteinuria and oedema are the principal clinical features of this disease. It is speculated that hypoxia-driven disruption of the angiogenic balance involving vascular endothelial growth factor (VEGF)/placenta-derived growth factor (PLGF) and soluble Fms-like tyrosine kinase-1 (sFLT-1, the soluble form of VEGF receptor 1) might contribute to some of the maternal symptoms of pre-eclampsia. However, pre-eclampsia does not develop in all women with high sFLT-1 or low PLGF levels, and it also occurs in some women with low sFLT-1 and high PLGF levels. Moreover, recent experiments strongly suggest that several soluble factors affecting the vasculature are probably elevated because of placental hypoxia in the pre-eclamptic women, indicating that upstream molecular defect(s) may contribute to pre-eclampsia. Here we show that pregnant mice deficient in catechol-O-methyltransferase (COMT) show a pre-eclampsia-like phenotype resulting from an absence of 2-methoxyoestradiol (2-ME), a natural metabolite of oestradiol that is elevated during the third trimester of normal human pregnancy. 2-ME ameliorates all pre-eclampsia-like features without toxicity in the Comt(-/-) pregnant mice and suppresses placental hypoxia, hypoxia-inducible factor-1alpha expression and sFLT-1 elevation. The levels of COMT and 2-ME are significantly lower in women with severe pre-eclampsia. Our studies identify a genetic mouse model for pre-eclampsia and suggest that 2-ME may have utility as a plasma and urine diagnostic marker for this disease, and may also serve as a therapeutic supplement to prevent or treat this disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgments This work was funded by the University of Aberdeen CLSM grant to TJS. EWJL was funded by a Society for Reproduction and Fertility undergraduate scholarship. TJS conceived the project, designed experiments, analyzed data and wrote the manuscript. EWJL conducted experiments and analyzed the data. CC conducted the immunocytochemistry. ML conducted HEK293 cell culture assays. EMC and ASB provided technical assistance. The authors thank Gerald Lincoln for critical feedback on a previous version of this manuscript.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgments This work was funded by the University of Aberdeen CLSM grant to TJS. EWJL was funded by a Society for Reproduction and Fertility undergraduate scholarship. TJS conceived the project, designed experiments, analyzed data and wrote the manuscript. EWJL conducted experiments and analyzed the data. CC conducted the immunocytochemistry. ML conducted HEK293 cell culture assays. EMC and ASB provided technical assistance. The authors thank Gerald Lincoln for critical feedback on a previous version of this manuscript.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete and faithful duplication of the genome is essential to ensure normal cell division and organismal development. Eukaryotic DNA replication is initiated at multiple sites termed origins of replication that are activated at different time through S phase. The replication timing program is regulated by the S-phase checkpoint, which signals and repairs replicative stress. Eukaryotic DNA is packaged with histones into chromatin, thus DNA-templated processes including replication are modulated by the local chromatin environment such as post-translational modifications (PTMs) of histones.

One such epigenetic mark, methylation of lysine 20 on histone H4 (H4K20), has been linked to chromatin compaction, transcription, DNA repair and DNA replication. H4K20 can be mono-, di- and tri-methylated. Monomethylation of H4K20 (H4K20me1) is mediated by the cell cycle-regulated histone methyltransferase PR-Set7 and subsequent di-/tri- methylation is catalyzed by Suv4-20. Prior studies have shown that PR-Set7 depletion in mammalian cells results in defective S phase progression and the accumulation of DNA damage, which may be partially attributed to defects in origin selection and activation. Meanwhile, overexpression of mammalian PR-Set7 recruits components of pre-Replication Complex (pre-RC) onto chromatin and licenses replication origins for re-replication. However, these studies were limited to only a handful of mammalian origins, and it remains unclear how PR-Set7 impacts the replication program on a genomic scale. Finally, the methylation substrates of PR-Set7 include both histone (H4K20) and non-histone targets, therefore it is necessary to directly test the role of H4K20 methylation in PR-Set7 regulated phenotypes.

I employed genetic, cytological, and genomic approaches to better understand the role of H4K20 methylation in regulating DNA replication and genome stability in Drosophila melanogaster cells. Depletion of Drosophila PR-Set7 by RNAi in cultured Kc167 cells led to an ATR-dependent cell cycle arrest with near 4N DNA content and the accumulation of DNA damage, indicating a defect in completing S phase. The cells were arrested at the second S phase following PR-Set7 downregulation, suggesting that it was an epigenetic effect that coupled to the dilution of histone modification over multiple cell cycles. To directly test the role of H4K20 methylation in regulating genome integrity, I collaborated with the Duronio Lab and observed spontaneous DNA damage on the imaginal wing discs of third instar mutant larvae that had an alanine substitution on H4K20 (H4K20A) thus unable to be methylated, confirming that H4K20 is a bona fide target of PR-Set7 in maintaining genome integrity.

One possible source of DNA damage due to loss of PR-Set7 is reduced origin activity. I used BrdU-seq to profile the genome-wide origin activation pattern. However, I found that deregulation of H4K20 methylation states by manipulating the H4K20 methyltransferases PR-Set7 and Suv4-20 had no impact on origin activation throughout the genome. I then mapped the genomic distribution of DNA damage upon PR-Set7 depletion. Surprisingly, ChIP-seq of the DNA damage marker γ-H2A.v located the DNA damage to late replicating euchromatic regions of the Drosophila genome, and the strength of γ-H2A.v signal was uniformly distributed and spanned the entire late replication domain, implying stochastic replication fork collapse within late replicating regions. Together these data suggest that PR-Set7-mediated monomethylation of H4K20 is critical for maintaining the genomic integrity of late replicating domains, presumably via stabilization of late replicating forks.

In addition to investigating the function of H4K20me, I also used immunofluorescence to characterize the cell cycle regulated chromatin loading of Mcm2-7 complex, the DNA helicase that licenses replication origins, using H4K20me1 level as a proxy for cell cycle stages. In parallel with chromatin spindown data by Powell et al. (Powell et al. 2015), we showed a continuous loading of Mcm2-7 during G1 and a progressive removal from chromatin through S phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seven Klebsiella pneumoniae isolates from dogs and cats in Spain were found to be highly resistant to aminoglycosides, and ArmA methyltransferase was responsible for this phenotype. All isolates were typed by multilocus sequence typing (MLST) as ST11, a human epidemic clone reported worldwide and associated with, among others, OXA-48 and NDM carbapenemases. In the seven strains, armA was borne by an IncR plasmid, pB1025, of 50 kb. The isolates were found to coproduce DHA-1 and SHV-11 β-lactamases, as well as the QnrB4 resistance determinant. This first report of the ArmA methyltransferase in pets illustrates their importance as a reservoir for human multidrug-resistant K. pneumoniae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aminoglycosides and beta-lactams are used for the treatment of a wide range of infections due to both Gram-negative and Gram-positive. An emerging aminoglycoside resistance mechanism, methylation of the aminoacyl site of the 16S rRNA, confers high-level resistance to clinically important aminoglycosides such as amikacin, tobramycin and gentamicin. Eight 16S rRNA methyltransferase genes, armA, rmtA, rmtB, rmtC, rmtD, rmtE, rmtF and npmA, have been identified in several species of enterobacteria worldwide (2, 6, 7, 9, 11, 13, 14). Resistance to extended spectrum β-lactams remains additionally an important clinical problem. Apart from the large TEM, SHV, and CTX-M families, several other extended-spectrum β-lactamases (ESBLs) have been identified, including VEB enzymes, which confer high-level resistance to cephalosporins and monobactams. Although 16S rRNA methyltransferases have been frequently identified associated with different ESBLs, there has been no report of association of a 16S rRNA methyltransferase with a VEB enzyme, except for the identification of rmtC with blaVEB-6 (14)