979 resultados para Thermo-inactivation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The BRCA1 gene was cloned in 1994 as one of the genes that conferred genetic predisposition to early-onset breast and ovarian cancer. Since then, a genetic test for identification of high-risk individuals has been developed. Despite being implicated in many important cellular pathways, including DNA repair and regulation of transcription, the exact mechanism by which inactivation of BRCA1 might lead to malignant transformation of cells remains unknown. We examine the mechanisms that underlie inactivation of BRCA1 and assess how they affect management of patients, in terms of both primary and secondary cancer prevention strategies. Furthermore, we look at the potential usefulness of BRCA1 as a prognostic tool and as a predictive marker of response to different classes of drugs. Finally, throughout this review, we draw links between the functional consequences of BRCA1 inactivation, in terms of key cellular signalling pathways, and how they might explain specific clinical observations in individuals who carry mutations in the gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential for performing cellulase-catalyzed reactions on cellulose dissolved in 1-butyl-3-methylimidazolium chloride ([bmim] Cl) has been investigated. We have carried out a systematic study on the irreversible solvent and ionic strength-induced inactivation and unfolding of cellulase from Trichoderma reesei ( E.C.#3.2.1.4). Experiments, varying both cellulase and IL solvent concentrations, have indicated that [bmim] Cl, and several other ILs, as well as dimethylacetamide-LiCl (a well-known solvent system for cellulose), inactivate cellulase under these conditions. Despite cellulase inactivity, results obtained from this study led to valuable insights into the requirements necessary for enzyme activity in IL systems. Enzyme stability was determined during urea, NaCl, and [bmim] Cl-induced denaturation observed through fluorescence spectroscopy. Protein stability of a PEG-supported cellulase in [bmim] Cl solution was investigated and increased stability/activity of the PEG-supported cellulase in both the [bmim] Cl and citrate buffer solutions were detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Odontoblasts form the outermost cellular layer of the dental pulp where they have been proposed to act as sensory receptor cells. Despite this suggestion, evidence supporting their direct role in mediating thermo-sensation and nociception is lacking. Transient receptor potential (TRP) ion channels directly mediate nociceptive functions, but their functional expression in human odontoblasts has yet to be elucidated. In the present study, we have examined the molecular and functional expression of thermo-sensitive TRP channels in cultured odontoblast-like cells and in native human odontoblasts obtained from healthy wisdom teeth. PCR and western blotting confirmed gene and protein expression of TRPV1, TRPA1 and TRPM8 channels. Immunohistochemistry revealed that these channels were localised to odontoblast-like cells as determined by double staining with dentin sialoprotein (DSP) antibody. In functional assays, agonists of TRPV1, TRPA1 and TRPM8 channels elicited [Ca2+]i transients that could be blocked by relevant antagonists. Application of hot and cold stimuli to the cells also evoked rises in [Ca2+]i which could be blocked by TRP-channel antagonists. Using a gene silencing approached we further confirmed a role for TRPA1 in mediating noxious cold responses in odontoblasts. We conclude that human odontoblasts express functional TRP channels that may play a crucial role in mediating thermal sensation in teeth. Cultured and native human odontoblasts express functional TRP channels that may play a crucial role in mediating thermal sensation in teeth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: We hypothesized that RUNX3 inactivation by promoter hypermethylation in colorectal polyps is an early molecular event in colorectal carcinogenesis.
METHODS: RUNX3 protein expression was analyzed immunohistochemically in 50 sporadic colorectal polyps comprising 19 hyperplastic polyps (HPs), 14 traditional serrated adenomas (TSAs), and 17 sporadic traditional adenomas (sTAs) as well as in 19 familial adenomatous polyposis (FAP) samples from 10 patients showing aberrant crypt foci (ACF) (n=91), small adenomas (SmAds) (n=40), and large adenomas (LAds) (n=13). In addition, we assessed the frequency of promoter hypermethylation of RUNX3 by methylation-specific PCR (MSP) in all the 50 sporadic polyps as well as 38 microdissected FAP polyps comprising ACF, SmAds, and LAds obtained from 7 FAP samples. A total of 12 normal colon samples were also included for RUNX3 MSP analysis.
RESULTS: Compared to normal colon (2 of 12, 16%) and sTAs (3 of 17, 18%), HPs (15 of 19, 79%) and TSAs (8 of 14, 57%) displayed significant inactivation of RUNX3 (P<0.05). In FAP, RUNX3 inactivation was more frequently seen in ACF (78 of 91, 86%), SmAds (25 of 40, 62%), and LAds (6 of 13, 46%) compared to normal mucosa (0 of 19, 0%) in the same samples (all P<0.05). Promoter hypermethylation of RUNX3 was significantly higher in colorectal polyps (64 of 87, 74%) compared to normal colon (2 of 12, 16%) (P=0.001). Serrated polyps such as HPs (17 of 19, 89%) and TSAs (12 of 14, 86%) were significantly more methylated than sTAs (7 of 17, 44%) (P=0.004). RUNX3 hypermethylation was observed in 28 of the total 38 (74%) FAP polyps. Overall, RUNX3 promoter methylation correlated with inactivation of RUNX3 expression in sporadic (27 of 36, 75%) (P=0.022) and FAP (21 of 28, 75%) (P=0.021) polyps.
CONCLUSIONS: Our data suggest that RUNX3 inactivation due to promoter hypermethylation in colorectal polyps represents an early event in colorectal cancer (CRC) progression. In addition, epigenetic RUNX3 inactivation is a frequent event in the serrated colonic polyps as well as in the ACF of FAP polyps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background We had previously established that inactivation of RUNX3 occurs by frequent promoter hypermethylation and protein mislocalization in invasive ductal carcinomas (IDC) of breast. Here, we hypothesize that inactivation of RUNX3 occurring in ductal carcinoma in situ (DCIS) represent early event in breast carcinogenesis. Methods The study cohort of 40 patients included 17 pure DCIS cases and 23 cases of DCIS with associated IDC (DCIS-IDC). The DCIS and IDC components of mixed cases were manually microdissected to permit separate evaluation. All the 63 samples including 17 pure DCIS, 23 samples each of DCIS and IDC of DCIS-IDC cases were analyzed for RUNX3 protein expression using R3-6E9 monoclonal antibody as well as promoter methylation status by methylation specific PCR. Results Compared to matched normal breast samples (4 of 40, 10%), DCIS (35 of 40, 88%) and IDC (21 of 23, 91%) exhibited significant RUNX3 inactivation (P