993 resultados para Therapeutics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past few years, many studies on the association between celiac disease and inflammatory bowel disease have been reported. The genetic origin of this association has prompted research that searches for a common link for the concomitant manifestation of these pathologies. Clinical studies aim not only to demonstrate this relation, but also to establish the epidemiological frequencies among affected individuals and their relatives as compared to the general population. The similar clinical symptoms, difficulties, diagnoses, and therapeutics are still a challenge, since this association is unknown to most coloproctologists, thereby culminating in treatments and surgical procedures with no benefits for the patient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MYCN oncogene amplification/expression is a feature of many childhood tumors, and some adult tumors, and it is associated with poor prognosis. While MYC expression is ubiquitary, MYCN has a restricted expression after birth and it is an ideal target for an effective therapy. PNAs belong to the latest class of nucleic acid-based therapeutics, and they can bind chromosomal DNA and block gene transcription (anti-gene activity). We have developed an anti-gene PNA that targets specifically the MYCN gene to block its transcription. We report for the first time MYCN targeted inhibition in Rhabdomyosarcoma (RMS) by the anti-MYCN-PNA in RMS cell lines (four ARMS and four ERMS) and in a xenograft RMS mouse model. Rhabdomyosarcoma is the most common pediatric soft-tissue sarcoma, comprising two main subgroups [Alveolar (ARMS) and Embryonal (ERMS)]. ARMS is associated with a poorer prognosis. MYCN amplification is a feature of both the ERMS and ARMS, but the MYCN amplification and expression levels shows a significant correlation and are greater in ARMS, in which they are associated with adverse outcome. We found that MYCN mRNA and protein levels were higher in the four ARMS (RH30, RH4, RH28 and RMZ-RC2) than in the four ERMS (RH36, SMS-CTR, CCA and RD) cell lines. The potent inhibition of MYCN transcription was highly specific, it did not affect the MYC expression, it was followed by cell-growth inhibition in the RMS cell lines which correlated with the MYCN expression rate, and it led to complete cell-growth inhibition in ARMS cells. We used a mutated- PNA as control. MYCN silencing induced apoptosis. Global gene expression analysis (Affymetrix microarrays) in ARMS cells treated with the anti-MYCN-PNA revealed genes specifically induced or repressed, with both genes previously described as targets of N-myc or Myc, and new genes undescribed as targets of N-myc or Myc (mainly involved in cell cycle, apoptosis, cell motility, metastasis, angiogenesis and muscle development). The changes in the expression of the most relevant genes were confirmed by Real-Time PCR and western blot, and their expression after the MYCN silencing was evaluated in the other RMS cell lines. The in vivo study, using an ARMS xenograft murine model evaluated by micro-PET, showed a complete elimination of the metabolic tumor signal in most of the cases (70%) after anti-MYCN-PNA treatment (without toxicity), whereas treatment with the mutated-PNA had no effect. Our results strongly support the development of MYCN anti-gene therapy for the treatment of RMS, particularly for poor prognosis ARMS, and of other MYCN-expressing tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this Ph.D. project has been the design and characterization of new and more efficient luminescent tools, in particular sensors and labels, for analytical chemistry, medical diagnostics and imaging. Actually both the increasing temporal and spatial resolutions that are demanded by those branches, coupled to a sensitivity that is required to reach the single molecule resolution, can be provided by the wide range of techniques based on luminescence spectroscopy. As far as the development of new chemical sensors is concerned, as chemists we were interested in the preparation of new, efficient, sensing materials. In this context, we kept developing new molecular chemosensors, by exploiting the supramolecular approach, for different classes of analytes. In particular we studied a family of luminescent tetrapodal-hosts based on aminopyridinium units with pyrenyl groups for the detection of anions. These systems exhibited noticeable changes in the photophysical properties, depending on the nature of the anion; in particular, addition of chloride resulted in a conformational change, giving an initial increase in excimeric emission. A good selectivity for dicarboxylic acid was also found. In the search for higher sensitivities, we moved our attention also to systems able to perform amplification effects. In this context we described the metal ion binding properties of three photoactive poly-(arylene ethynylene) co-polymers with different complexing units and we highlighted, for one of them, a ten-fold amplification of the response in case of addition of Zn2+, Cu2+ and Hg2+ ions. In addition, we were able to demonstrate the formation of complexes with Yb3+ an Er3+ and an efficient sensitization of their typical metal centered NIR emission upon excitation of the polymer structure, this feature being of particular interest for their possible applications in optical imaging and in optical amplification for telecommunication purposes. An amplification effect was also observed during this research in silica nanoparticles derivatized with a suitable zinc probe. In this case we were able to prove, for the first time, that nanoparticles can work as “off-on” chemosensors with signal amplification. Fluorescent silica nanoparticles can be thus seen as innovative multicomponent systems in which the organization of photophysically active units gives rise to fruitful collective effects. These precious effects can be exploited for biological imaging, medical diagnostic and therapeutics, as evidenced also by some results reported in this thesis. In particular, the observed amplification effect has been obtained thanks to a suitable organization of molecular probe units onto the surface of the nanoparticles. In the effort of reaching a deeper inside in the mechanisms which lead to the final amplification effects, we also attempted to find a correlation between the synthetic route and the final organization of the active molecules in the silica network, and thus with those mutual interactions between one another which result in the emerging, collective behavior, responsible for the desired signal amplification. In this context, we firstly investigated the process of formation of silica nanoparticles doped with pyrene derivative and we showed that the dyes are not uniformly dispersed inside the silica matrix; thus, core-shell structures can be formed spontaneously in a one step synthesis. Moreover, as far as the design of new labels is concerned, we reported a new synthetic approach to obtain a class of robust, biocompatible silica core-shell nanoparticles able to show a long-term stability. Taking advantage of this new approach we also showed the synthesis and photophysical properties of core-shell NIR absorbing and emitting materials that proved to be very valuable for in-vivo imaging. In general, the dye doped silica nanoparticles prepared in the framework of this project can conjugate unique properties, such as a very high brightness, due to the possibility to include many fluorophores per nanoparticle, high stability, because of the shielding effect of the silica matrix, and, to date, no toxicity, with a simple and low-cost preparation. All these features make these nanostructures suitable to reach the low detection limits that are nowadays required for effective clinical and environmental applications, fulfilling in this way the initial expectations of this research project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Poxviruses are a family of double stranded DNA (dsDNA) viruses that cause disease in many species, both vertebrate and invertebrate. Their genomes range in size from 135 to 365 kbp and show conservation in both organization and content. In particular, the central genomic regions of the chordopoxvirus subfamily (those capable of infecting vertebrates) contain 88 genes which are present in all the virus species characterised to date and which mostly occur in the same order and orientation. In contrast, however, the terminal regions of the genomes frequently contain genes that are species or genera-specific and that are not essential for the growth of the virus in vitro but instead often encode factors with important roles in vivo including modulation of the host immune response to infection and determination of the host range of the virus. The Parapoxviruses (PPV), of which Orf virus is the prototypic species, represent a genus within the chordopoxvirus subfamily of Poxviridae and are characterised by their ability to infect ruminants and humans. The genus currently contains four recognised species of virus, bovine papular stomatitis virus (BPSV) and pseudocowpox virus (PCPV) both of which infect cattle, orf virus (OV) that infects sheep and goats, and parapoxvirus of red deer in New Zealand (PVNZ). The ORFV genome has been fully sequenced, as has that of BPSV, and is ~138 kb in length encoding ~132 genes. The vast majority of these genes allow the virus to replicate in the cytoplasm of the infected host cell and therefore encode proteins involved in replication, transcription and metabolism of nucleic acids. These genes are well conserved between all known genera of poxviruses. There is however another class of genes, located at either end of the linear dsDNA genome, that encode proteins which are non-essential for replication and generally dictate host range and virulence of the virus. The non-essential genes are often the most variable within and between species of virus and therefore are potentially useful for diagnostic purposes. Given their role in subverting the host-immune response to infection they are also targets for novel therapeutics. The function of only a relatively small number of these proteins has been elucidated and there are several genes whose function still remains obscure principally because there is little similarity between them and proteins of known function in current sequence databases. It is thought that by selectively removing some of the virulence genes, or at least neutralising the proteins in some way, current vaccines could be improved. The evolution of poxviruses has been proposed to be an adaptive process involving frequent events of gene gain and loss, such that the virus co-evolves with its specific host. Gene capture or horizontal gene transfer from the host to the virus is considered an important source of new viral genes including those likely to be involved in host range and those enabling the virus to interfere with the host immune response to infection. Given the low rate of nucleotide substitution, recombination can be seen as an essential evolutionary driving force although it is likely underestimated. Recombination in poxviruses is intimately linked to DNA replication with both viral and cellular proteins participate in this recombination-dependent replication. It has been shown, in other poxvirus genera, that recombination between isolates and perhaps even between species does occur, thereby providing another mechanism for the acquisition of new genes and for the rapid evolution of viruses. Such events may result in viruses that have a selective advantage over others, for example in re-infections (a characteristic of the PPV), or in viruses that are able to jump the species barrier and infect new hosts. Sequence data related to viral strains isolated from goats suggest that possible recombination events may have occurred between OV and PCPV (Ueda et al. 2003). The recombination events are frequent during poxvirus replication and comparative genomic analysis of several poxvirus species has revealed that recombinations occur frequently on the right terminal region. Intraspecific recombination can occur between strains of the same PPV species, but also interspecific recombination can happen depending on enough sequence similarity to enable recombination between distinct PPV species. The most important pre-requisite for a successful recombination is the coinfection of the individual host by different virus strains or species. Consequently, the following factors affecting the distribution of different viruses to shared target cells need to be considered: dose of inoculated virus, time interval between inoculation of the first and the second virus, distance between the marker mutations, genetic homology. At present there are no available data on the replication dynamics of PPV in permissive and non permissive hosts and reguarding co-infetions there are no information on the interference mechanisms occurring during the simultaneous replication of viruses of different species. This work has been carried out to set up permissive substrates allowing the replication of different PPV species, in particular keratinocytes monolayers and organotypic skin cultures. Furthermore a method to isolate and expand ovine skin stem cells was has been set up to indeep further aspects of viral cellular tropism during natural infection. The study produced important data to elucidate the replication dynamics of OV and PCPV virus in vitro as well as the mechanisms of interference that can arise during co-infection with different viral species. Moreover, the analysis carried on the genomic right terminal region of PCPV 1303/05 contributed to a better knowledge of the viral genes involved in host interaction and pathogenesis as well as to locate recombination breakpoints and genetic homologies between PPV species. Taken together these data filled several crucial gaps for the study of interspecific recombinations of PPVs which are thought to be important for a better understanding of the viral evolution and to improve the biosafety of antiviral therapy and PPV-based vectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

“Naturally occurring cancers in pet dogs and humans share many features, including histological appearance, tumour genetics, molecular targets, biological behaviour and response to conventional therapies. Studying dogs with cancer is likely to provide a valuable perspective that is distinct from that generated by the study of human or rodent cancers alone. The value of this opportunity has been increasingly recognized in the field of cancer research for the identification of cancer-associated genes, the study of environmental risk factors, understanding tumour biology and progression, and, perhaps most importantly, the evaluation and development of novel cancer therapeutics”.(Paoloni and Khanna, 2008) In last years, the author has investigated some molecular features of cancer in dogs. The Thesis is articulated in two main sections. In section 1, the preliminary results of a research project aimed at investigating the role of somatic mutations of Ataxia-Telangiectasia mutated (ATM) gene in predisposing to cancer in boxer dogs, are presented. The canine boxer breed may be considered an unique opportunity to disclose the role of ATM somatic mutation since boxer dogs are known to be dramatically susceptible to cancer and since they may be considered a closed gene pool. Furthermore, dogs share with human the some environment. Overall, the abovementioned features could be considered extremely useful for our purposes. In the section 2, the results of our studies aimed at setting up accurate and sensitive molecular assays for diagnosing and assessing minimal residual disease in lymphoproliferative disorders of dogs, are presented. The results of those molecular assay may be directly translated in the field of Veterinary practice as well as the may be used to improve our objective evaluation of new investigational drugs effectiveness in canine cancer trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past few years, in veterinary medicine there has been an increased interest in understanding the biology of mesenchymal stem cells (MSCs). This interest comes from their potential clinical use especially in wound repair, tissue engineering and application in therapeutics fields, including regenerative surgery. MSCs can be isolated directly from bone marrow aspirates, adipose tissue, umbilical cord and various foetal tissues. In this study, mesenchymal stem cells were isolated from equine bone marrow, adipose tissue, cord blood, Wharton’s Jelly and, for the first time, amniotic fluid. All these cell lines underwent in vitro differentiation in chondrocytes, osteocytes and adipocytes. After molecular characterization, cells resulted positive for mesenchymal markers such as CD90, CD105, CD44 and negative for CD45, CD14, CD34 and CD73. Adipose tissue and bone marrow mesenchymal stem cells were successfully applied in the treatment of tendinitis in race horses. Furthermore, for the first time in the horse, skin wounds of septicemic foal, were treated applying amniotic stem cells. Finally, results never reported have been obtained in the present study, isolating mesenchymal stem cells from domestic cat foetal fluid and membranes. All cell lines underwent in vitro differentiation and expressed mesenchymal molecular markers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nano(bio)science and nano(bio)technology play a growing and tremendous interest both on academic and industrial aspects. They are undergoing rapid developments on many fronts such as genomics, proteomics, system biology, and medical applications. However, the lack of characterization tools for nano(bio)systems is currently considered as a major limiting factor to the final establishment of nano(bio)technologies. Flow Field-Flow Fractionation (FlFFF) is a separation technique that is definitely emerging in the bioanalytical field, and the number of applications on nano(bio)analytes such as high molar-mass proteins and protein complexes, sub-cellular units, viruses, and functionalized nanoparticles is constantly increasing. This can be ascribed to the intrinsic advantages of FlFFF for the separation of nano(bio)analytes. FlFFF is ideally suited to separate particles over a broad size range (1 nm-1 μm) according to their hydrodynamic radius (rh). The fractionation is carried out in an empty channel by a flow stream of a mobile phase of any composition. For these reasons, fractionation is developed without surface interaction of the analyte with packing or gel media, and there is no stationary phase able to induce mechanical or shear stress on nanosized analytes, which are for these reasons kept in their native state. Characterization of nano(bio)analytes is made possible after fractionation by interfacing the FlFFF system with detection techniques for morphological, optical or mass characterization. For instance, FlFFF coupling with multi-angle light scattering (MALS) detection allows for absolute molecular weight and size determination, and mass spectrometry has made FlFFF enter the field of proteomics. Potentialities of FlFFF couplings with multi-detection systems are discussed in the first section of this dissertation. The second and the third sections are dedicated to new methods that have been developed for the analysis and characterization of different samples of interest in the fields of diagnostics, pharmaceutics, and nanomedicine. The second section focuses on biological samples such as protein complexes and protein aggregates. In particular it focuses on FlFFF methods developed to give new insights into: a) chemical composition and morphological features of blood serum lipoprotein classes, b) time-dependent aggregation pattern of the amyloid protein Aβ1-42, and c) aggregation state of antibody therapeutics in their formulation buffers. The third section is dedicated to the analysis and characterization of structured nanoparticles designed for nanomedicine applications. The discussed results indicate that FlFFF with on-line MALS and fluorescence detection (FD) may become the unparallel methodology for the analysis and characterization of new, structured, fluorescent nanomaterials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Es wurden neue funktionalisierte Carbazole und anellierte Benzo[a]carbazole als potentielle pharmakologische Therapeutika durch 1,6-pi-Elektrocyclisierung auf photo-chemischem, thermischem und sonochemischem Weg synthetisiert und die Synthesemethoden der 1,6-pi-Elektrocyclisierung sowie der 2,3-Divinylindole und der 2-Aryl-3-vinylindole als entsprechende Ausgangsprodukte validiert und evaluiert. Es gelang weder das nach den Woodward-Hoffmann-Regeln erwartete primäre Cyclisierungsprodukt mit Indolochinodimethanstruktur noch die Existenz des in einer photochemischen Abfangreaktion daraus resultierenden Cycloprodukts NMR-spektroskopisch nachzuweisen, um den stereochemischen Verlauf der Cyclisierung vorherzusagen. Ergebnisse der quantenchemischen Berechnungen der Eduktmoleküle (AO-Koeffizienten der MO's, HOMO/LUMO-Energien) sowie der Übergangszustandsgeometrien der Cyclisierungen decken sich mit den experimentellen Daten. Divinyl- und 2-Aryl-3-vinylindole sind als Systeme mit Hexatriensymmetrie aufzufassen, deren Cyclisierungsverhalten sich mit den Woodward-Hoffmann-Regeln beschreiben läßt. Im Vergleich der verschiedenen 1,6-pi-Elektrocyclisierungsmethoden zeigte sich, daß die photochemische Variante eine elegante Synthesemethode darstellt, um funktionalisierte Carbazole und Benzo[a]carbazole mit unterschiedlichen pharmakologischen Aktivitäten unter schonenden Reaktionsbedingungen mit den vergleichbar höchsten Ausbeuten zu erhalten. Demgegenüber lieferten die Ultraschallreaktionen keine nachweisbaren Cyclisierungsprodukte. Die thermische Cyclisierung führte zur Gruppe der 1,2-Dihydrocarbazole. Sie bildeten sich in einer Folgereaktion durch [1,5s]-H-Verschiebung aus dem primär entstandenen Woodward-Hoffmann-Cyclisierungsprodukt. In abschließenden DNA-Bindestudien mit verschiedenen Testsystemen zeigte keine der synthetisierten Testsubstanzen DNA-Bindungsaktivität.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gliomas are the most common primary brain tumours. Despite advances in surgical techniques, postoperative supportive care, radiation and adjuvant systemic therapy, the life expectancy of patients with high grade glioma has remained essentially poor. Furthermore differential diagnosis among astrocytomas, oligodendrogliomas and oligoastrocytomas is very challenging and subject to inter-observer variability. The purpose of the research was: 1) to investigate a series of high grade and low grade gliomas at gene and protein (immunohistochemistry) levels to disclose possible genetic portraits of malignancy; 2) to verify the utility of Nogo-A, Olig-2 and synaptophysin in providing a correct histological diagnosis of oligodendroglioma and to investigate a possible complementary role in selecting the best areas suitable for detecting 1p/19q codeletion using FISH analysis; 3) to study the role of microRNA in high grade gliomas. In order to obtain these goals large series of brain tumors were studied with DNA microarrays, immunohistochemistry and RT-PCR The results demonstrated that: - Overexpression of IGFBP-2 and CDC20 is highly related to glioblastomas and their immunopositivity can be useful for the identification of glioblastoma in small biopsies. - Nogo-A is the most useful and specific marker in differentiating oigodendrogliomas from other gliomas. Furthermore, using a Nogo-A driven FISH analysis, it is possible to identify a larger number of 1p19q codeletions in gliomas. - microRNAs can be studied in paraffin embedded tissues better than in fresh tissues. A series of six microRNA, significatively deregulated in glioblastomas, may represent a genetic signature with prognostic and predictive value and could constitute candidates for novel anti-cancer therapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CD33 is a myeloid cell surface marker absent on normal hematopoietic stem cells and normal tissues but present on leukemic blasts in 90% of adult and paediatric acute myeloid leukaemia (AML) cases. By virtue of its expression pattern and its ability to be rapidly internalized after antibody binding, CD33 has become an attractive target for new immunotherapeutic approaches to treat AML. In this study two immunoconjugates were constructed to contain a humanised single-chain fragment variable antibody (scFv) against CD33 in order to create new antibody-derived therapeutics for AML. The first immunoconjugate was developed to provide targeted delivery of siRNAs as death effectors into leukemic cells. To this purpose, a CD33-specific scFv, modified to include a Cys residue at its C-terminal end (scFvCD33-Cys), was coupled through a disulphide bridge to a nona-d-arginine (9R) peptide carrying a free Cys to the N-terminal. The scFvCD33-9R was able to completely bind siRNAs at a protein to nucleic acid ratio of about 10:1, as confirmed by electrophoretic gel mobility-shift assay. The conjugate was unable to efficiently transduce cytotoxic siRNA (siTox) into the human myeloid cell line U937. We observed slight reductions in cell viability, with a reduction of 25% in comparison to the control group only at high concentration of siTox (300 nM). The second immunoconjugate was constructed by coupling the scFvCD33-Cys to the type 1 ribosome inactivating protein Dianthin 30 (DIA30) through a chemical linking The resulting immunotoxin scFvCD33-DIA30 caused the rapid arrest of protein synthesis, inducing apoptosis and leading ultimately to cell death. In vitro dose-dependent cytotoxicity assays demonstrated that scFvCD33-DIA30 was specifically toxic to CD33-positive cell U937. The concentration needed to reach 50 % of maximum killing efficiency (EC50) was approximately 0.3 nM. The pronounced antigen-restricted cytotoxicity of this novel agent makes it a candidate for further evaluation of its therapeutic potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the amyloid hypothesis, Alzheimer’s disease (AD) is caused by aberrant production or clearance of the amyloid-β (Aβ) peptides, and in particular of the longer more aggregation-prone Aβ42. The Aβ peptides are generated through successive proteolytic cleavage of the amyloid precursor protein (APP) by the β-site APP cleaving enzyme (BACE) and γ-secretase. γ-secretase produces Aβ peptides with variable C-termini ranging from Aβ34 to Aβ48, presumably by sequential trimming of longer into shorter peptides. γ-secretase is a multiprotein complex consisting of at least four different proteins and the presenilin proteins (PS1 or PS2) contain the catalytic center of the complex. In 2001 several non-steroidal anti-inflammatory drugs were identified as the founding members of a new class of γ-secretase modulators (GSMs) that can selectively reduce production of Aβ42. Concomitantly, these GSMs increase Aβ38 production indicating closely coordinated generation of Aβ42 and Aβ38 and a potential precursor-product relationship between these peptides. GSMs seem to exert their activity by direct modulation of γ-secretase. Support for this hypothesis is drawn from the finding that some PS mutations associated with early-onset familial AD (FAD) can modulate the cellular response to GSMs and to γ-secretase inhibitors (GSIs), which inhibit production of all Aβ peptides and are known to directly interact with PS. A particularly interesting FAD PS mutation is PS1-ΔExon9, a complex deletion mutant that blocks endoproteolysis of PS1 and renders cells completely non-responsive to GSMs. Studies presented in this thesis show that the diminished response of PS1-ΔExon9 to GSMs is mainly caused by its lack of endoproteolytic cleavage. Furthermore, we were able to demonstrate that a reduced response to GSMs and GSIs is not limited to PS1-ΔExon9 but is a common effect of aggressive FAD-associated PS1 mutations. Surprisingly, we also found that while the Aβ42 response to GSMs is almost completely abolished by these PS1 mutations, the accompanying Aβ38 increase was indistinguishable to wild-type PS1. Finally, the reduced response to GSIs was confirmed in a mouse model with transgenic expression of an aggressive FAD-associated PS1 mutation as a highly potent GSI failed to reduce Aβ42 levels in brain of these mice. Taken together, our findings provide clear evidence for independent generation of Aβ42 and Aβ38 peptides, and argue that the sequential cleavage model might be an oversimplification of the molecular mechanism of γ-secretase. Most importantly, our results highlight the significance of genetic background in drug discovery efforts aimed at γ-secretase, and indicate that the use of cellular models with transgenic expression of FAD-associated PS mutations might confound studies of the potency and efficacy of GSMs and GSIs. Therefore, such models should be strictly avoided in the ongoing preclinical development of these promising and potentially disease-modifying therapeutics for AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanotechnology entails the manufacturing and manipulation of matter at length scales ranging from single atoms to micron-sized objects. The ability to address properties on the biologically-relevant nanometer scale has made nanotechnology attractive for Nanomedicine. This is perceived as a great opportunity in healthcare especially in diagnostics, therapeutics and more in general to develop personalized medicine. Nanomedicine has the potential to enable early detection and prevention, and to improve diagnosis, mass screening, treatment and follow-up of many diseases. From the biological standpoint, nanomaterials match the typical size of naturally occurring functional units or components of living organisms and, for this reason, enable more effective interaction with biological systems. Nanomaterials have the potential to influence the functionality and cell fate in the regeneration of organs and tissues. To this aim, nanotechnology provides an arsenal of techniques for intervening, fabricate, and modulate the environment where cells live and function. Unconventional micro- and nano-fabrication techniques allow patterning biomolecules and biocompatible materials down to the level of a few nanometer feature size. Patterning is not simply a deterministic placement of a material; in a more extended acception it allows a controlled fabrication of structures and gradients of different nature. Gradients are emerging as one of the key factors guiding cell adhesion, proliferation, migration and even differentiation in the case of stem cells. The main goal of this thesis has been to devise a nanotechnology-based strategy and tools to spatially and temporally control biologically-relevant phenomena in-vitro which are important in some fields of medical research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In den letzten Jahren hat die Tumorbehandlung mit immunologischen Präparaten an Bedeutung gewonnen. Der allgemeine Ablauf der Testung eines Arzneimittelkandidaten sieht vor, zunächst in Zellkulturversuchen und Tierversuchen Wirkweise und Sicherheit, sowie voraussichtliche Abbauwege und mögliche Gefahren so beurteilen zu können, dass sie für einen Einsatz im Menschen in Frage kommen. Zur präklinischen in vitro-Testung werden dabei in der Regel Monolayer-Zellkulturen oder Einzelzellsuspensionen eingesetzt. Der Einsatz von 3D-Zellkulturmodellen, welche den Aufbau von Mikrometastasen oder intervaskuläre Areale in Tumoren exakter widerspiegeln, führt zu wesentlich besseren Voraussagen bezüglich der klinischen Wirksamkeit neuer Präparate. Das Ziel dieser Arbeit war daher die Entwicklung und Anwendung eines neuen 3D-Zellkulturbasierten Systems zur Testung trifunktionaler bispezifischer Antikörper für die Tumorbehandlung, welches sich auch auf andere vergleichbare Präparate übertragen lässt.rnIn meiner Arbeit konnte ich mehrere humane Tumorzelllinien definieren, mit denen es gelang, stabile Co-Kulturen von Multi Cellular Tumour Spheroids (MCTS) mit Peripheral Blood Mononuclear Cells (PBMC) in miniaturisierten Spinner-Flaschen zu etablieren. Spinner-Flaschen, in denen die im Kulturmedium befindlichen Immunzellen, MCTS und Therapeutika ständig frei zirkulieren, sind besonders für eine wirklichkeitsnahe Nachbildung der in vivo-Simulation mit disseminierten Tumorzellen oder mit malignem Aszites geeignet. Diese Art der Kultivierung erlaubte Beobachtungszeiten von ≥20 Tagen für eine große Bandbreite Analysemethoden. Zu den mit dem erstellten Protokoll standardmäßig durchführbaren Analysemethoden zählen unter anderem immunhistochemische Färbungen an Sphäroid-Gefrierschnitten, Vitalitätstest, Untersuchung der Plattierungs-Effizienz, Bestimmung der Sphäroidvolumina, Zytokinbestimmungen aus dem Medienüberstand mit Cytokine Bead Arrays, PCR-Analysen immunzellspezifischer Antigene, sowie durchflusszytometrische Analysen. Diese Methodenkombination erlaubt einen sehr detaillierten Einblick in die Wirkweise und Effizienz neuer Immuntherapeutika aus verschiedensten Blickwinkeln und stellt ein reproduzierbares Testsystem zur präklinischen Testung von Immuntherapeutika dar, das zukünftig als Bindeglied zwischen Monolayer-Zellkulturen und klinischen Prüfungen einen festen Platz einnehmen könnte.rnMit dem beschriebenen 3D-Zellkultur-System wurden in der vorliegenden Arbeit die trifunktionalen bispezifischen Antikörper catumaxomab (unter dem Handelsnamen Removab® für die Behandlung maligner Ascites zugelassen) und ertumaxomab (derzeit in klinischen Prüfungen) hinsichtlich ihrer Wirkweise untersucht. Die Antikörper besitzen im Gegensatz zu herkömmlichen monoklonalen Antikörpern zwei verschiedene Bindungsarme, einer gegen CD3 auf T-Zellen, der zweite gegen EpCAM respektive Her2/neu - beides weit verbreitete Tumorantigene - gerichtet. An ihrem Fc-Teil besitzen sie eine dritte Bindungskapazität, über welche sie an Fcγ RI, -IIa und -III positive akzessorische Zellen binden. Diese Kombination ermöglicht theoretisch die Ausbildung eines Tri-Zell-Komplexes aus T-Zelle, Tumorzelle und akzessorischer Zelle. Dies stellt eine wirkungsvolle Therapieoption unter Ausnutzung der körpereigenen, immunologischen Abwehr dar. rnIm Rahmen dieser Arbeit wurde gezeigt, dass beide Antikörper eine Größenreduktion der Sphäroide mit den entsprechenden Tumorantigenen in gleichem Maße bewirkten und die Plattierungseffizienz durch ertumaxomab dosisabhängig reduziert wurde. Mit dem erstellten Testsystem konnte der Wirkmechanismus von catumaxomab auf Sphäroide der Zelllinie FaDu (Kopf-Hals-Plattenepithelkarzinom) detaillierter gezeigt werden: catumaxomab wirkte dosisabhängig auf die Reduktion der Sphäroidvolumina und die zunehmende Infiltration von CD45+ Zellen, die als T-, NK- und/oder dendritische Zellen identifiziert wurden. Des Weiteren rief die catumaxomab-Gabe eine verstärkte Ausschüttung der Zytokine IL-2, IFN-γ und TNF-α hervor. Diese Ergebnisse sprechen dafür, dass catumaxomab die zelluläre Immunantwort aktiviert.rnDie Standard-Tumorbehandlung beinhaltet die Gabe von Chemotherapeutika. Oft werden dafür Zytostatika mit dem unerwünschten Nebeneffekt auch gesunde proliferierende Zellen anzugreifen verwendet. Dies kann prinzipiell auch die Wirksamkeit der Antikörper-Therapie beeinflussen. Aus diesem Grund wurden in dieser Arbeit zusätzlich vergleichende Kombinations-Versuche mit catumaxomab und einem gängigen Zytostatikum - Cisplatin - durchgeführt. Mit Untersuchungen der Sphäroidvolumina, Vitalitätstests und Plattierungseffizienz konnte gezeigt werden, dass die Wirkung von catumaxomab bei gleichzeitiger Anwendung beider Therapeutika aufrecht erhalten bleibt und diese sogar additiv verstärkt wird. Eine Kombinationstherapie im Menschen ist daher denkbar.rnrn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monoclonal antibodies have emerged as one of the most promising therapeutics in oncology over the last decades. The generation of fully human tumorantigen-specific antibodies suitable for anti-tumor therapy is laborious and difficult to achieve. Autoreactive B cells expressing those antibodies are detectable in cancer patients and represent a suitable source for human antibodies. However, the isolation and cultivation of this cell type is challenging. A novel method was established to identify antigen-specific B cells. The method is based on the conversion of the antigen independent CD40 signal into an antigen-specific one. For that, the artificial fusion proteins ABCos1 and ABCos2 (Antigen-specific B cell co-stimulator) were generated, which consist of an extracellular association-domain derived from the constant region of the human immunoglobulin (Ig) G1, a transmembrane fragment and an intracellular signal transducer domain derived of the cytoplasmic domain of the human CD40 receptor. By the association with endogenous Ig molecules the heterodimeric complex allows the antigen-specific stimulation of both the BCR and CD40. In this work the ability of the ABCos constructs to associate with endogenous IgG molecules was shown. Moreover, crosslinking of ABCos stimulates the activation of NF-κB in HEK293-lucNifty and induces proliferation in B cells. The stimulation of ABCos in transfected B cells results in an activation pattern different from that induced by the conventional CD40 signal. ABCos activated B cells show a mainly IgG isotype specific activation of memory B cells and are characterized by high proliferation and the differentiation into plasma cells. To validate the approach a model system was conducted: B cells were transfected with IVT-RNA encoding for anti-Plac1 B cell receptor (antigen-specific BCR), ABCos or both. The stimulation with the BCR specific Plac1 peptide induces proliferation only in the cotransfected B cell population. Moreover, we tested the method in human IgG+ memory B cells from CMV infected blood donors, in which the stimulation of ABCos transfected B cells with a CMV peptide induces antigen-specific expansion. These findings show that challenging ABCos transfected B cells with a specific antigen results in the activation and expansion of antigen-specific B cells and not only allows the identification but also cultivation of these B cells. The described method will help to identify antigen-specific B cells and can be used to characterize (tumor) autoantigen-specific B cells and allows the generation of fully human antibodies that can be used as diagnostic tool as well as in cancer therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Da Tumorerkrankungen ein enormes Gesundheitsproblem in der westlichen Welt darstellen, wird eine Vielzahl neuer Behandlungsstrategien entwickelt. Neuartige Tumor-Therapeutika werden jedoch üblicherweise zunächst an Tiermodellen evaluiert, bevor sie am Menschen angewandt werden.rnIn der vorliegenden Arbeit wurde ein BAC-transgenes Mausmodell generiert, welches als autochthones Melanommodell zur Anwendung kommen sollte.rnZunächst wurde dafür ein DNA-Konstrukt erzeugt. Dieses enthält die Melanom-Onkogene BrafV600E, Cdk4R24C und Mitf deren Expression durch die Tamoxifen-induzierbare Rekombinase CreERT2 kontrollierbar sein sollte. Die Verwendung des Tyrosinasepromoters sollte die melanozytenspezifische Expression der eingebrachten Gene gewährleisten. Ein weiterer Bestandteil des Konstrukts ist ein Luziferase-Gen, welches die Lokalisierung Onkogen-exprimierender Zellen durch in vivo-Biolumineszenz-Imaging erlaubt, da die Onkogen- und Luziferase-Expression durch 2A-Sequenzen gekoppelt sind.rnVor der Generierung der transgenen Tiere sollten in vitro Analysen die Funktionalität des Konstruktteils, bestehend aus den Onkogenen und der Luziferase, klären. Zu diesem Zweck wurde die Zelllinie C22 mit einem Expressionsvektor transfiziert, welcher den genannten Konstruktteil enthielt. Es konnte ein Anstieg der Braf- und Cdk4-Expression auf Protein Ebene, das Vorhandensein von Luziferase-Aktivität und die Aktivierung des MAP-Kinase-Signalwegs nachgewiesen werden. Die Funktionalität des untersuchten Konstruktteils war damit nahegelegt und die Generierung der transgenen Tiere wurde fortgesetzt.rnDie Pronukeus-Injektion resultierte schließlich in 3 Founder-Tieren, die mittels PCR und Southern Blot identifiziert wurden und die Bezeichnung „B6 tg Tyr iOnkogene“ (TyriOn) erhielten. Durch Verkreuzen der Founder-Tiere mit C57BL/6 Mäusen wurden im weiteren Verlauf 3 Linien erzeugt. Bei in vivo Biolumineszenz-Messungen zeigten Tiere der Linie D einen gewissen Grad an Hintergrund-Luziferase-Aktivität, die jedoch durch Tamoxifen-Injektionen verstärkt werden konnte. In den Folgegenerationen ging diese Tamoxifen-induzierte Verstärkung der Luziferase-Aktivität teilweise verloren. Es wurde die Vermutung angestellt, dass funktionelle und nicht-funktionelle Varianten des Transgens an unterschiedlichen Stellen im Genom von Founder D integriert hatten, und sich in den folgenden Generationen auf die Nachkommen verteilten. Die mangelnde Induzierbarkeit betroffener Tiere konnte nicht auf fehlende Integrität der Sequenz „iOnkogene“ in diesen Tieren oder auf nicht-funktionelle loxP-Stellen im Konstrukt zurückgeführt werden.rnTamoxifen-Injektionen führten in TyriOn-D Tieren im Laufe von 15 Monaten nicht zur Entwicklung von Tumoren. Ebenso wenig konnten in TyriOn-D / Cre del Tieren, welche die eingebrachten Onkogene maximal exprimieren sollten, Tumoren detektiert werden. Um zu analysieren, ob die eingebrachten Onkogene die Bildung von Tumoren begünstigen, wurden TyriOn-D Tiere mit dem Melanom-anfälligen Stamm MT/ret verkreuzt. Hierzu konnte im Rahmen dieser Arbeit noch kein Ergebnis erzielt werden. Allerdings konnte in Melanomen von TyriOn-D / MT/ret Tieren Luziferase-Aktivität bei in vivo Biolumineszenz-Messungen und CreERT2 RNA durch RT-PCR detektiert werden.rnTyriOn-D / MT/ret Tiere werden im weiteren Verlauf dieses Projektes nicht nur der Analyse der Melanomentwicklung dienen. Deren Tumore ermöglichen außerdem weitere Untersuchungen bezüglich der Funktionalität des Konstrukts, die teilweise in TyriOn Tieren keine Resultate ergaben.