92 resultados para Tendinopathy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Patellar tendon abnormality (PTA) on diagnostic imaging is part of the diagnostic criteria for patellar tendinopathy. PTA and altered landing strategies are primary risk factors that increase the likelihood of asymptomatic athletes developing patellar tendinopathy. Therefore, the aim of this study was to examine the risk factors that are predictors of the presence and severity of a PTA in junior pre-elite athletes. METHODS: Ten junior pre-elite male basketball athletes with a PTA were matched with 10 athletes with normal patellar tendons. Participants had patellar tendon morphology, Victorian Institute of Sport Assessment (VISA) score, body composition, lower limb flexibility, and maximum vertical jump height measured before performing five successful stop-jump tasks. During each stop-jump task, both two-dimensional and three-dimensional kinematics and ground reaction forces were recorded. Multiple regression analyses were used to identify factors for estimating PTA presence and severity, and discriminate analysis was used to classify PTA presence. RESULTS: Sixty-eight percent of variance for presence of a PTA was accounted for by hip joint range of motion (ROM) and knee joint angle at initial foot-ground contact (IC) during stop-jump task and quadriceps flexibility, whereas hip joint ROM during stop-jump task and VISA score accounted for 62% of variance for PTA severity. Prediction of the presence of a PTA was achieved with 95% accuracy and 95% cross-validation. CONCLUSIONS: An easily implemented, reliable, and valid movement screening tool composed of three criteria enables coaches and/or clinicians to predict the presence and severity of a PTA in asymptomatic athletes. This enables identification of asymptomatic athletes at higher risk of developing patellar tendinopathy, which allows the development of effective preventative measures to aid in the reduction of patellar tendinopathy injury prevalence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Achilles tendon has been seen to exhibit time-dependent conditioning when isometric muscle actions were of a prolonged duration, compared to those involved in dynamic activities, such as walking. Since, the effect of short duration muscle activation associated with dynamic activities is yet to be established, the present study aimed to investigate the effect of incidental walking activity on Achilles tendon diametral strain. Eleven healthy male participants refrained from physical activity in excess of the walking required to carry out necessary daily tasks and wore an activity monitor during the 24 h study period. Achilles tendon diametral strain, 2 cm proximal to the calcaneal insertion, was determined from sagittal sonograms. Baseline sonographic examinations were conducted at ∼08:00 h followed by replicate examinations at 12 and 24 h. Walking activity was measured as either present (1) or absent (0) and a linear weighting function was applied to account for the proximity of walking activity to tendon examination time. Over the course of the day the median (min, max) Achilles tendon diametral strain was −11.4 (4.5, −25.4)%. A statistically significant relationship was evident between walking activity and diametral strain (P < 0.01) and this relationship improved when walking activity was temporally weighted (AIC 131 to 126). The results demonstrate that the short yet repetitive loads generated during activities of daily living, such as walking, are sufficient to induce appreciable time-dependant conditioning of the Achilles tendon. Implications arise for the in vivo measurement of Achilles tendon properties and the rehabilitation of tendinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To investigate the acute effects of isolated eccentric and concentric calf muscle exercise on Achilles tendon sagittal thickness. ---------- Design: Within-subject, counterbalanced, mixed design. ---------- Setting: Institutional. ---------- Participants: 11 healthy, recreationally active male adults. ---------- Interventions: Participants performed an exercise protocol, which involved isolated eccentric loading of the Achilles tendon of a single limb and isolated concentric loading of the contralateral, both with the addition of 20% bodyweight. ---------- Main outcome measurements: Sagittal sonograms were acquired prior to, immediately following and 3, 6, 12 and 24 h after exercise. Tendon thickness was measured 2 cm proximal to the superior aspect of the calcaneus. ---------- Results: Both loading conditions resulted in an immediate decrease in normalised Achilles tendon thickness. Eccentric loading induced a significantly greater decrease than concentric loading despite a similar impulse (−0.21 vs −0.05, p<0.05). Post-exercise, eccentrically loaded tendons recovered exponentially, with a recovery time constant of 2.5 h. The same exponential function did not adequately model changes in tendon thickness resulting from concentric loading. Even so, recovery pathways subsequent to the 3 h time point were comparable. Regardless of the exercise protocol, full tendon thickness recovery was not observed until 24 h. ---------- Conclusions: Eccentric loading invokes a greater reduction in Achilles tendon thickness immediately after exercise but appears to recover fully in a similar time frame to concentric loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eccentric exercise is the conservative treatment of choice for mid-portion Achilles tendinopathy. While there is a growing body of evidence supporting the medium to long term efficacy of eccentric exercise in Achilles tendinopathy treatment, very few studies have investigated the short term response of the tendon to eccentric exercise. Moreover, the mechanisms through which tendinopathy symptom resolution occurs remain to be established. The primary purpose of this thesis was to investigate the acute adaptations of the Achilles tendon to, and the biomechanical characteristics of, the eccentric exercise protocol used for Achilles tendinopathy rehabilitation and a concentric equivalent. The research was conducted with an orientation towards exploring potential mechanisms through which eccentric exercise may bring about a resolution of tendinopathy symptoms. Specifically, the morphology of tendinopathic and normal Achilles tendons was monitored using high resolution sonography prior to and following eccentric and concentric exercise, to facilitate comparison between the treatment of choice and a similar alternative. To date, the only proposed mechanism through which eccentric exercise is thought to result in symptom resolution is the increased variability in motor output force observed during eccentric exercise. This thesis expanded upon prior work by investigating the variability in motor output force recorded during eccentric and concentric exercises, when performed at two different knee joint angles, by limbs with and without symptomatic tendinopathy. The methodological phase of the research focused on establishing the reliability of measures of tendon thickness, tendon echogenicity, electromyography (EMG) of the Triceps Surae and the standard deviation (SD) and power spectral density (PSD) of the vertical ground reaction force (VGRF). These analyses facilitated comparison between the error in the measurements and experimental differences identified as statistically significant, so that the importance and meaning of the experimental differences could be established. One potential limitation of monitoring the morphological response of the Achilles tendon to exercise loading is that the Achilles tendon is continually exposed to additional loading as participants complete the walking required to carry out their necessary daily tasks. The specific purpose of the last experiment in the methodological phase was to evaluate the effect of incidental walking activity on Achilles tendon morphology. The results of this study indicated that walking activity could decrease Achilles tendon thickness (negative diametral strain) and that the decrease in thickness was dependent on both the amount of walking completed and the proximity of walking activity to the sonographic examination. Thus, incidental walking activity was identified as a potentially confounding factor for future experiments which endeavoured to monitor changes in tendon thickness with exercise loading. In the experimental phase of this thesis the thickness of Achilles tendons was monitored prior to and following isolated eccentric and concentric exercise. The initial pilot study demonstrated that eccentric exercise resulted in a greater acute decrease in Achilles tendon thickness (greater diametral strain) compared to an equivalent concentric exercise, in participants with no history of Achilles tendon pain. This experiment was then expanded to incorporate participants with unilateral Achilles tendinopathy. The major finding of this experiment was that the acute decrease in Achilles tendon thickness observed following eccentric exercise was modified by the presence of tendinopathy, with a smaller decrease (less diametral strain) noted for tendinopathic compared to healthy control tendon. Based on in vitro evidence a decrease in tendon thickness is believed to reflect extrusion of fluid from the tendon with loading. This process would appear to be limited by the presence of pathology and is hypothesised to be a result of the changes in tendon structure associated with tendinopathy. Load induced fluid movement may be important to the maintenance of tendon homeostasis and structure as it has the potential to enhance molecular movement and stimulate tendon remodelling. On this basis eccentric exercise may be more beneficial to the tendon than concentric exercise. Finally, EMG and motor output force variability (SD and PSD of VGRF) were investigated while participants with and without tendinopathy performed the eccentric and concentric exercises. Although between condition differences were identified as statistically significant for a number of force variability parameters, the differences were not greater than the limits of agreement for repeated measures. Consequently the meaning and importance of these findings were questioned. Interestingly, the EMG amplitude of all three Triceps Surae muscles did not vary with knee joint angle during the performance of eccentric exercise. This raises questions pertaining to the functional importance of performing the eccentric exercise protocol at each of the two knee joint angles as it is currently prescribed. EMG amplitude was significantly greater during concentric compared to eccentric muscle actions. Differences in the muscle activation patterns may result in different stress distributions within the tendon and be related to the different diametral strain responses observed for eccentric and concentric muscle actions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The human patellar tendon is highly adaptive to changes in habitual loading but little is known about its acute mechanical response to exercise. This research evaluated the immediate transverse strain response of the patellar tendon to a bout of resistive quadriceps exercise. Methods: Twelve healthy adult males (mean age 34.0+/-12.1 years, height 1.75+/-0.09 m and weight 76.7+/-12.3 kg) free of knee pain participated in the research. A 10-5 MHz linear-array transducer was used to acquire standardised sagittal sonograms of the right patellar tendon immediately prior to and following 90 repetitions of a double-leg parallel-squat exercise performed against a resistance of 175% bodyweight. Tendon thickness was determined 20-mm distal to the pole of the patellar and transverse Hencky strain was calculated as the natural log of the ratio of post- to pre-exercise tendon thickness and expressed as a percentage. Measures of tendon echotexture (echogenicity and entropy) were also calculated from subsequent gray-scale profiles. Results: Quadriceps exercise resulted in an immediate decrease in patellar tendon thickness (P<.05), equating to a transverse strain of -22.5+/-3.4%, and was accompanied by increased tendon echogenicity (P<.05) and decreased entropy (P<.05). The transverse strain response of the patellar tendon was significantly correlated with both tendon echogenicity (r = -0.58, P<.05) and entropy following exercise (r=0.73, P<.05), while older age was associated with greater entropy of the patellar tendon prior to exercise (r=0.79, P<.05) and a reduced transverse strain response (r=0.61, P<.05) following exercise. Conclusions: This study is the first to show that quadriceps exercise invokes structural alignment and fluid movement within the matrix that are manifest by changes in echotexture and transverse strain in the patellar tendon., (C)2012The American College of Sports Medicine

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Achilles tendinopathy is a common disorder involving physically active and sedentary individuals alike. Although the processes underlying its development are poorly understood, tendinopathy is widely regarded as an ‘overuse’ injury in which the tendon fails to adapt to prevalent loading conditions. Paradoxically, there is emerging evidence that heavy eccentric loading of the Achilles tendon may be an effective conservative approach for treatment of tendinopathy, with success rates of 60–80% reported. Interestingly, loading exercises involving other forms of muscle action, such as concentric activation, have been shown to be less effective treatment options. However, little is known about the acute response of tendon to exercise at present, and there are few plausible explanatory mechanisms for the observed beneficial effects of eccentric exercise, as opposed to other forms of strain stimuli. This paper presents the findings from a series of experiments undertaken to evaluate the effect of various strain stimuli on the time-dependent response of human Achilles tendon in vivo. It was shown for the first time, that heavy resistive ankle plantarflexion/ dorsiflexion exercises induced an immediate and significant decrease in Achilles tendon thickness (~15%). While thickness returned to pre-exercise levels within 24 hours, the recovery was exponential, with primary recovery occurring in less than 6 hours post-exercise. We proposed that such a diametral strain response with tensile loading reflects collagen realignment, Poison’s effects and radial extrusion of water from the tendon core. With unloading, the recovery of tendon dimensions likely reflects the re-diffusion of water via osmotic and/or inflammatory driven processes. Interestingly, prolonged walking was found to induce a similar diametral strain response. In subsequent studies, we demonstrated that eccentric exercise resulted in a greater reduction (-21%) in Achilles tendon thickness than isolated concentric exercise alone (-5%), despite a similar loading impulse. These novel findings, coupled with observations of a reduced diametral strain response with tendon pathology, highlight the importance of fluid movement to tendon function, nutrition and health. They also provide new insights into potential mechanisms underlying Achilles tendinopathy that impact rehabilitation strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patellar tendon ultrasound appearance is commonly used in clinical practice to diagnose patellar tendinopathy and guide management. Using a longitudinal study design we examined whether or not the presence of a hypoechoic ultrasonographic lesion in an asymptomatic patellar tendon conferred a risk for developing jumper's knee compared with a tendon that was ultrasonographically normal. Ultrasonographic, symptomatic and anthropometric assessment was completed at baseline and followup. Magnetic resonance imaging was performed on four tendons that resolved ultrasonographically in the study period. Forty-six patellar tendons were followed over 47 ± 11.8 months. Eighteen tendons were hypoechoic at baseline and 28 were ultrasonographically normal. Five tendons resolved ultrasonographically in the study period. Magnetic resonance imaging in four of these tendons was normal. Seven normal patellar tendons at baseline developed a hypoechoic area but only two became symptomatic. Analysis of ultrasonography at baseline and clinical outcome with Fisher's exact test shows there is no association between baseline ultrasound changes and symptoms at followup. In this study there is no statistically significant relationship between ultrasonographic patellar tendon abnormalities and clinical outcome in elite male athletes. Management of jumper's knee should not be solely based on ultrasonographic appearance; clinical assessment remains the cornerstone of appropriate management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Footwear remains a prime candidate for the prevention and rehabilitation of Achilles tendinopathy as it is thought to decrease tension in the tendon through elevation of the heel. However, evidence for this effect is equivocal. Purpose: This study used an acoustic transmission technique to investigate the effect of running shoes on Achilles tendon loading during barefoot and shod walking. Methods: Acoustic velocity was measured in the Achilles tendon of twelve recreationally–active males (age, 31±9 years; height, 1.78±0.06 m; weight, 81.0±16.9 kg) during barefoot and shod walking at matched self–selected speed (3.4±0.7 km/h). Standard running shoes incorporating a 10– mm heel offset were used. Vertical ground reaction force and spatiotemporal parameters were determined with an instrumented treadmill. Axial acoustic velocity in the Achilles tendon was measured using a custom built ultrasonic device. All data were acquired at a rate of 100 Hz during 10s of steady–state walking. Statistical comparisons between barefoot and shod conditions were made using paired t–tests and repeated measure ANOVAs. Results: Acoustic velocity in the Achilles tendon was highly reproducible and was typified by two maxima (P1, P2) and minima (M1, M2) during walking. Footwear resulted in a significant increase in step length, stance duration and peak vertical ground reaction force compared to barefoot walking. Peak acoustic velocity in the Achilles tendon (P1, P2) was significantly higher with running shoes. Conclusions: Peak acoustic velocity in the Achilles tendon was higher with footwear, suggesting that standard running shoes with a 10–mm heel offset increase tensile load in the Achilles tendon. Although further research is required, these findings question the therapeutic role of standard running shoes in Achilles tendinopathy.