976 resultados para TECTA PROTEIN, HUMAN


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We ascertained a Brazilian family with nine individuals affected by autosomal dominant nonsyndromic sensorineural hearing loss. The bilateral hearing loss affected mainly mid-high frequencies, was apparently stable with an early onset. Microsatellites close to the DFNA8/DFNA12 locus, which harbors the TECTA gene, showed significant multipoint lod scores (32) close to marker D11S4107. Sequencing of the exons and exon-intron boundaries of the TECTA gene in one affected subject revealed the deletion c.5383 + 5delGTGA in the 5' end of intron 16, that includes the last two bases of the donor splice site consensus sequence. This mutation segregates with deafness within the family. To date, 33 different TECTA mutations associated with autossomal dominant hearing loss have been described. Among them is the mutation reported herein, first described by Hildebrand et al. (2011) in a UK family. The audioprofiles from the UK and Brazilian families were similar. In order to investigate the transcripts produced by the mutated allele, we performed cDNA analysis of a lymphoblastoid cell line from an affected heterozygote with the c.5383 + 5delGTGA and a noncarrier from the same family. The analysis allowed us to identify an aberrant transcript with skipping of exon 16, without affecting the reading frame. One of the dominant TECTA mutations already described, a synonymous substitution in exon 16 (c.5331 G<A), was also shown to affect splicing resulting in an aberrant transcript lacking exon 16. Despite the difference in the DNA level, both the synonymous substitution in exon 16 (c.5331 G<A) and the mutation described herein affect splicing of exon 16, leading to its skipping. At the protein level they would have the same effect, an in-frame deletion of 37 amino-acids (p.S1758Y/G1759_N1795del) probably leading to an impaired function of the ZP domain. Thus, like the TECTA missense mutations associated with dominant hearing loss, the c5383 + 5delGTGA mutation does not have an inactivating effect on the protein. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mature human interleukin-11 (HuIL-11) is a cytokine consisting of 178 amino acid residues that results from scission of the N-terminal signal peptide, consisting of 21 amino acid residaues, from the corresponding nascent polypeptide. A DNA fragment encoding a truncated HuIL-11 (trHuIL-11), with an additional 5 amino acid residues removed from the N-terminus, was cloned into vector pGEX-2T between the BamHI site and the EcoRI site. Upon transformation with Escherichia coli BL21, the construct over-produced a glutathione S-transferase (GST)-fused protein in a soluble form after IPTG induction. The fusion protein was initially fractionated with butyl-Sepharose 4 fast flow column and by affinity chromatography using a GSH-Sepharose 4B column. On-site enzymatic release with thrombin gave the target protein at 96% purity as judged by SDS-PAGE and HPLC. Expression of the interleukin as a GST-fused protein thus greatly improved downstream processing. Subsequent biological activity assay suggested that trHuIL-11 had similar activity profile to the naturally produced sample and may be a promising candidate for further development as biopharmaceutical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used a novel site-specific protein-DNA photocrosslinking procedure to define the positions of polypeptide chains relative to promoter DNA in binary, ternary, and quaternary complexes containing human TATA-binding protein, human or yeast transcription factor IIA (TFIIA), human transcription factor IIB (TFIIB), and promoter DNA. The results indicate that TFIIA and TFIIB make more extensive interactions with promoter DNA than previously anticipated. TATA-binding protein, TFIIA, and TFIIB surround promoter DNA for two turns of DNA helix and thus may form a "cylindrical clamp" effectively topologically linked to promoter DNA. Our results have implications for the energetics, DNA-sequence-specificity, and pathway of assembly of eukaryotic transcription complexes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Familial autosomal dominant calcium pyrophosphate dihydrate (CPPD) chondrocalcinosis has previously been mapped to chromosome 5pl5. We have identified a mutation in the ANKH gene that segregates with the disease in a family with this condition. ANKH encodes a putative transmembrane inorganic pyrophosphate (PPi) transport channel. We postulate that loss of function of ANKH causes elevated extracellular PPi levels, predisposing to CPPD crystal deposition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Copper (Cu) has a critical role in the generation of oxidative stress during neurodegeneration and cancer. Reactive oxygen species generated through abnormal elevation or deficiency of Cu can lead to lipid, protein, and DNA damage. Oxidation of DNA can induce strand breaks and is associated with altered cell fate including transformation or death. DNA repair is mediated through the action of the multimeric DNA-PK repair complex. The components of this complex are the Ku autoantigens, XRCC5 and XRCC6 (Ku80 and Ku70, respectively). How this repair complex responds to perturbed Cu homeostasis and Cu-mediated oxidative stress has not been investigated. We previously reported that XRCC5 expression is altered in response to cellular Cu levels, with low Cu inhibiting XRCC5 expression and high Cu levels enhancing expression. In this study we further investigated the interaction between XRCC5 and Cu. We report that cytosolic XRCC5 is increased in response to Cu, but not zinc, iron, or nickel, and the level of cytosolic XRCC5 correlates with protection against oxidative damage to DNA. These observations were made in both HeLa cells and fibroblasts. Cytosolic XRCC5 interacted with the Cu chaperone and detoxification protein human Atox1 homologue (HAH), and down regulation of XRCC5 expression using siRNA led to enhanced HAH expression when cells were exposed to Cu. XRCC5 could also be purified from cytosolic extracts using a Cu-loaded column. These findings provide further evidence that cytosolic XRCC5 has a key role in protection against DNA oxidation from Cu, through either direct sequestration or signaling through other Cu-detoxification molecules. Our findings have important implications for the development of therapeutic treatments targeting Cu in neurodegeneration and/or cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Past studies have shown that mean values of Interleukin-6 (IL-6) and C-reactive protein (CRP) do not change significantly in COPD patients over a one-year period. However, longer period follow-up studies are still lacking. Thus, the aim of this study is to evaluate plasma CRP and IL-6 concentration over three years in COPD patients and to test the association between these inflammatory mediators and disease outcome markers. Methods: A cohort of 77 outpatients with stable COPD was evaluated at baseline, and 53 (mean FEV1, 56% predicted) were included in the prospective study. We evaluated Interleukin-6 (IL-6), C-reactive protein (CRP), six-minute walking distance (6MWD), and body mass index (BMI) at baseline and after three years. Plasma concentration of IL-6 was measured by high sensitivity ELISA, and CRP was obtained by high sensitivity particle-enhanced immunonephelometry. Results: IL-6 increased significantly after 3 years compared to baseline measurements [0.8 (0.5-1.3) vs 2.4 (1.3-4.4) pg/ml; p < 0.001] and was associated with worse 6MWD performance. In the Cox regression, increased IL-6 at baseline was associated with mortality [Hazard Ratio (95% CI) = 2.68 (0.13, 1.84); p = 0.02]. CRP mean values did not change [5 (1.6-7.9) vs 4.7 (1.7-10) pg/L; p = 0.84], although eleven patients (21%) presented with changes >3 mg/L in CRP after 3 years. Conclusions: The systemic inflammatory process, evaluated by IL-6, seems to be persistent, progressive and associated with mortality and worse physical performance in COPD patients. Trial registration: No.:NCT00605540. © 2013 Ferrari et al; licensee BioMed Central Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We engineered a full-length (8.3-kbp) cDNA coding for fatty acid synthase (FAS; EC 2.3.1.85) from the human brain FAS cDNA clones we characterized previously. In the process of accomplishing this task, we developed a novel PCR procedure, recombinant PCR, which is very useful in joining two overlapping DNA fragments that do not have a common or unique restriction site. The full-length cDNA was cloned in pMAL-c2 for heterologous expression in Escherichia coli as a maltose-binding protein fusion. The recombinant protein was purified by using amylose-resin affinity and hydroxylapatite chromatography. As expected from the coding capacity of the cDNA expressed, the chimeric recombinant protein has a molecular weight of 310,000 and reacts with antibodies against both human FAS and maltose-binding protein. The maltose-binding protein-human FAS (MBP-hFAS) catalyzed palmitate synthesis from acetyl-CoA, malonyl-CoA, and NADPH and exhibited all of the partial activities of FAS at levels comparable with those of the native human enzyme purified from HepG2 cells. Like the native HepG2 FAS, the products of MBP-hFAS are mainly palmitic acid (>90%) and minimal amounts of stearic and arachidic acids. Similarly, a human FAS cDNA encoding domain I (β-ketoacyl synthase, acetyl-CoA and malonyl-CoA transacylases, and β-hydroxyacyl dehydratase) was cloned and expressed in E. coli using pMAL-c2. The expressed fusion protein, MBP-hFAS domain I, was purified to apparent homogeneity (Mr 190,000) and exhibited the activities of the acetyl/malonyl transacylases and the β-hydroxyacyl dehydratase. In addition, a human FAS cDNA encoding domains II and III (enoyl and β-ketoacyl reductases, acyl carrier protein, and thioesterase) was cloned in pET-32b(+) and expressed in E. coli as a fusion protein with thioredoxin and six in-frame histidine residues. The recombinant fusion protein, thioredoxin-human FAS domains II and III, that was purified from E. coli had a molecular weight of 159,000 and exhibited the activities of the enoyl and β-ketoacyl reductases and the thioesterase. Both the MBP and the thioredoxin-His-tags do not appear to interfere with the catalytic activity of human FAS or its partial activities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background - Pichia pastoris is a widely-used host for recombinant protein production; expression is typically driven by methanol-inducible alcohol oxidase (AOX) promoters. Recently this system has become an important source of recombinant G protein-coupled receptors (GPCRs) for structural biology and drug discovery. The influence of diverse culture parameters (such as pH, dissolved oxygen concentration, medium composition, antifoam concentration and culture temperature) on productivity has been investigated for a wide range of recombinant proteins in P. pastoris. In contrast, the impact of the pre-induction phases on yield has not been as closely studied. In this study, we examined the pre-induction phases of P. pastoris bioreactor cultivations producing three different recombinant proteins: the GPCR, human A2a adenosine receptor (hA2aR), green fluorescent protein (GFP) and human calcitonin gene-related peptide receptor component protein (as a GFP fusion protein; hCGRP-RCP-GFP). Results - Functional hA2aR was detected in the pre-induction phases of a 1 L bioreactor cultivation of glycerol-grown P. pastoris. In a separate experiment, a glycerol-grown P. pastoris strain secreted soluble GFP prior to methanol addition. When glucose, which has been shown to repress AOX expression, was the pre-induction carbon source, hA2aR and GFP were still produced in the pre-induction phases. Both hA2aR and GFP were also produced in methanol-free cultivations; functional protein yields were maintained or increased after depletion of the carbon source. Analysis of the pre-induction phases of 10 L pilot scale cultivations also demonstrated that pre-induction yields were at least maintained after methanol induction, even in the presence of cytotoxic concentrations of methanol. Additional bioreactor data for hCGRP-RCP-GFP and shake-flask data for GFP, horseradish peroxidase (HRP), the human tetraspanins hCD81 and CD82, and the tight-junction protein human claudin-1, demonstrated that bioreactor but not shake flask cultivations exhibit recombinant protein production in the pre-induction phases of P. pastoris cultures. Conclusions - The production of recombinant hA2aR, GFP and hCGRP-RCP-GFP can be detected in bioreactor cultivations prior to methanol induction, while this is not the case for shake-flask cultivations of GFP, HRP, hCD81, hCD82 and human claudin-1. This confirms earlier suggestions of leaky expression from AOX promoters, which we report here for both glycerol- and glucose-grown cells in bioreactor cultivations. These findings suggest that the productivity of AOX-dependent bioprocesses is not solely dependent on induction by methanol. We conclude that in order to maximize total yields, pre-induction phase cultivation conditions should be optimized, and that increased specific productivity may result in decreased biomass yields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cervical cancer is one of the world's major health issues. Despite many studies in this field, the carcinogenetic events of malignant conversion in cervical tumours have not been significantly characterised. The first aim of this project was to investigate the mutation status of the tumour suppressor gene- Phosphatase and Tension Homolog (PTEN)- in cervical cancer tissue. The second aim of this study was the analysis in the same cervical cancer tissue for aberrations in the mitochondrial electron transport chain subunit gene NDUFB8, which is localised to the same chromosomal contig as PTEN. The third aim was the evaluation of the potential therapeutic anti-cancer drug 2,4-Thiazolidinediones (TZDs) and its affect in regulating the PTEN protein in a cervical cancer cell line (HeLa). To approach the aims, paraffin-embedded cancerous cervical tissue and non-cancerous cervical tissue were obtained. DNA recovered from those tissues was then used to investigate the putative genomic changes regarding the NDUFB8 gene utilising SYBR Green I Real-Time PCR. The PTEN gene was studied via Dual-Labelled probe Real-Time PCR. To investigate the protein expression change of the PTEN protein, HeLa cells were firstly treated with different concentrations of 2,4-Thiazolidinediones and the level of PTEN protein expression was then observed utilising standard protein assays. Results indicated that there were putative copy-number changes between the cancerous cervical tissue and non-cancerous cervical tissue, with regard to the PTEN locus. This implies a potential gain of the PTEN gene in cancerous cervical tissue. With regards to normal cervical tissue versus cancerous cervical tissue no significant melting temperature differences were observed with the SYBR Green I Real-Time PCR in respect to the NDUFB8 gene. A putative up-regulation of PTEN protein was observed in TZD treated HeLa cells. © 2008 Springer Science+Business Media, LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The incidence of Squamous Cell Carcinoma (SCG) is growing in certain populations to the extent that it is now the most common skin lesion in young men and women in high ultraviolet exposure regions such as Queensland. In terms of incidence up to 40% of the Australian population over 40 years of age is thought to possess the precancerous Solar Keratosis (SK) lesion and with a small, but significant, chance of progression into SCC, understanding the genetic events that play a role in this process is essential. The major aims of this study were to analyse whole blood derived samples for DNA aberrations in genes associated with tumour development and cellular maintenance, with the ultimate aim of identifying genes associated with non-melanoma skin cancer development. More specifically the first aim of this project was to analyse the SDHD and MMP12 genes via Dual-Labelled Probe Real-Time PCR for copy number aberrations in an affected Solar Keratosis and control cohort. It was found that 12 samples had identifiable copy-number aberrations in either the SDHD or MMP12 gene (this means that a genetic section of either of these two genes is aberrantly amplified or deleted), with five of the samples exhibiting aberrations in both genes. The significance of this study is the contribution to the knowledge of the genetic pathways that are malformed in the progression and development of the pre-cancerous skin lesion Solar Keratosis. © 2008 Springer Science+Business Media, LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Angiogenesis may play a role in the pathogenesis of Non-Small Cell Lung cancer (NSCLC). The CXC (ELR+) chemokine family are powerful promoters of the angiogenic response. Methods: The expression of the CXC (ELR+) family members (CXCL1-3/GROα-γ, CXCL8/IL-8, CXCR1/2) was examined in a series of resected fresh frozen NSCLC tumours. Additionally, the expression and epigenetic regulation of these chemokines was examined in normal bronchial epithelial and NSCLC cell lines. Results: Overall, expression of the chemokine ligands (CXCL1, 2, 8) and their receptors (CXCR1/2) were down regulated in tumour samples compared with normal, with the exception of CXCL3. CXCL8 and CXCR1/2 were found to be epigenetically regulated by histone post-translational modifications. Recombinant CXCL8 did not stimulate cell growth in either a normal bronchial epithelial or a squamous carcinoma cell line (SKMES-1). However, an increase was observed at 72 hours post treatment in an adenocarcinoma cell line. Conclusions: CXC (ELR+) chemokines are dysregulated in NSCLC. The balance of these chemokines may be critical in the tumour microenvironment and requires further elucidation. It remains to be seen if epigenetic targeting of these pathways is a viable therapeutic option in lung cancer treatment. © 2011 Baird et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The epidermal growth factor receptor (EGFR) is commonly expressed in non-small-cell lung cancer (NSCLC) and promotes a host of mechanisms involved in tumorigenesis. However, EGFR expression does not reliably predict prognosis or response to EGFR-targeted therapies. The data from two previous studies of a series of 181 consecutive surgically resected stage I-IIIA NSCLC patients who had survived in excess of 60 days were explored. Of these patients, tissue was available for evaluation of EGFR in 179 patients, carbonic anhydrase (CA) IX in 177 patients and matrix metalloproteinase-9 (MMP-9) in 169 patients. We have previously reported an association between EGFR expression and MMP-9 expression. We have also reported that MMP-9 (P=0.001) and perinuclear (p)CA IX (P=0.03) but not EGFR expression were associated with a poor prognosis. Perinuclear CA IX expression was also associated with EGFR expression (P<0.001). Multivariate analysis demonstrated that coexpression of MMP-9 with EGFR conferred a worse prognosis than the expression of MMP-9 alone (P<0.001) and coexpression of EGFR and pCA IX conferred a worse prognosis than pCA IX alone (P=0.05). A model was then developed where the study population was divided into three groups: group 1 had expression of EGFR without coexpression of MMP-9 or pCA IX (number=21); group 2 had no expression of EGFR (number=75); and group 3 had coexpression of EGFR with pCA IX or MMP-9 or both (number=70). Group 3 had a worse prognosis than either groups 1 or 2 (P=0.0003 and 0.027, respectively) and group 1 had a better prognosis than group 2 (P=0.036). These data identify two cohorts of EGFR-positive patients with diametrically opposite prognoses. The group expressing either EGFR and or both MMP-9 and pCA IX may identify a group of patients with activated EGFR, which is of clinical relevance with the advent of EGFR-targeted therapies. © 2004 Cancer Research UK.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose To evaluate carbonic anhydrase (CA) IX as a surrogate marker of hypoxia and investigate the prognostic significance of different patterns of expression in non-small-cell lung cancer (NSCLC). Methods Standard immunohistochemical techniques were used to study CA IX expression in 175 resected NSCLC tumors. CA IX expression was determined by Western blotting in A549 cell lines grown under normoxic and hypoxic conditions. Measurements from microvessels to CA IX positivity were obtained. Results CA IX immunostaining was detected in 81.8% of patients. Membranous (m) (P = .005), cytoplasmic (c) (P = .018), and stromal (P < .001) CA IX expression correlated with the extent of tumor necrosis (TN). The mean distance from vascular endothelium to the start of tumor cell positivity was 90 μm, which equates to an oxygen pressure of 5.77 mmHg. The distance to blood vessels from individual tumor cells or tumor cell clusters was greater if they expressed mCA IX than if they did not (P < .001). Hypoxic exposure of A549 cells for 16 hours enhanced CAIX expression in the nuclear and cytosolic extracts. Perinuclear (p) CA IX (P = .035) was associated with a poor prognosis. In multivariate analysis, pCA IX (P = .004), stage (P = .001), platelet count (P = .011), sex (P = .027), and TN (P = .035) were independent poor prognostic factors. Conclusion These results add weight to the contention that mCA IX is a marker of tumor cell hypoxia. The absence of CA IX staining close to microvessels suggests that these vessels are functionally active. pCA IX expression is representative of an aggressive phenotype. © 2003 by American Society of Clinical Oncology.