923 resultados para Superoxide-dismutase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the human Cu,Zn superoxide dismutase gene (SOD1) are found in 20% of kindreds with familial amyotrophic lateral sclerosis. Transgenic mice (line G1H) expressing a human SOD1 containing a mutation of Gly-93 --> Ala (G93A) develop a motor neuron disease similar to familial amyotrophic lateral sclerosis, but transgenic mice (line N1029) expressing a wild-type human SOD1 transgene do not. Because neurofilament (NF)-rich inclusions in spinal motor neurons are characteristic of amyotrophic lateral sclerosis, we asked whether mutant G1H and/or N1029 mice develop similar NF lesions. NF inclusions (i.e., spheroids, Lewy body-like inclusions) were first detected in spinal cord motor neurons of the G1H mice at 82 days of age about the time these mice first showed clinical evidence of disease. Other neuronal intermediate filament proteins (alpha-internexin, peripherin) also accumulated in these spheroids. The onset of accumulations of ubiquitin immunoreactivity in the G1H mice paralleled the emergence of vacuoles and NF-rich spheroids in neurons, but they did not colocalize exclusively with spheroids. In contrast, NF inclusions were not seen in the N1029 mice until they were 132 days old, and ubiquitin immunoreactivity was not increased in the N1029 mice even at 199 days of age. Astrocytosis in spinal cord was associated with a marked increase in glial fibrillary acidic protein immunoreactivity in the G1H mice, but not in the N1029 mice. Finally, comparative studies revealed a striking similarity between the cytoskeletal pathology in the G1H transgenic mice and in patients with amyotrophic lateral sclerosis. These findings link a specific SOD1 mutation with alterations in the neuronal cytoskeleton of patients with amyotrophic lateral sclerosis. Thus, neuronal cytoskeletal abnormalities may be implicated in the pathogenesis of human familial amyotrophic lateral sclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in Cu/Zn superoxide dismutase (SOD), a hallmark of familial amyotrophic lateral sclerosis (FALS) in humans, are shown here to confer striking neuropathology in Drosophila. Heterozygotes with one wild-type and one deleted SOD allele retain the expected 50% of normal activity for this dimeric enzyme. However, heterozygotes with one wild-type and one missense SOD allele show lesser SOD activities, ranging from 37% for a heterozygote carrying a missense mutation predicted from structural models to destabilize the dimer interface, to an average of 13% for several heterozygotes carrying missense mutations predicted to destabilize the subunit fold. Genetic and biochemical evidence suggests a model of dimer dysequilibrium whereby SOD activity in missense heterozygotes is reduced through entrapment of wild-type subunits into unstable or enzymatically inactive heterodimers. This dramatic impairment of the activity of wild-type subunits in vivo has implications for our understanding of FALS and for possible therapeutic strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular superoxide dismutase (EC-SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) is a secreted Cu- and Zn-containing tetrameric glycoprotein, the bulk of which is bound to heparan sulfate proteoglycans in the interstitium of tissues. To test the function of EC-SOD in vivo, mice carrying a targeted disruption of the EC-SOD gene were generated. The EC-SOD null mutant mice develop normally and remain healthy until at least 14 months of age. No compensatory induction of other SOD isoenzymes or other antioxidant enzymes was observed. When stressed by exposure to > 99% oxygen, the EC-SOD null mutant mice display a considerable reduction in survival time compared to wild-type mice and an earlier onset of severe lung edema. These findings suggest that while under normal physiological conditions other antioxidant systems may substitute for the loss of EC-SOD; when the animal is stressed these systems are unable to provide adequate protection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A gene encoding a fusion protein consisting of Escherichia coli iron superoxide dismutase (FeSOD) with the mitochondrial targeting presequence of yeast manganese superoxide dismutase (MnSOD) was cloned and expressed in E. coli and in Saccharomyces cerevisiae DL1Mn- yeast cells deficient in MnSOD. In the yeast cells the fusion protein was imported into the mitochondrial matrix. However, the presequence was not cleaved. In a control set of experiments, the E. coli FeSOD gene without the yeast MnSOD leader sequence was also cloned and expressed in S. cerevisiae DL1Mn- cells. In this case the FeSOD was located in the cytosol and was not imported into the mitochondrial matrix. E. coli FeSOD, with and without the yeast MnSOD presequence, proved to be active in yeast, but, whereas the FeSOD targeted to the mitochondria of yeast cells deficient in MnSOD protected the cells from the toxic effects of oxidative stress, FeSOD without the yeast MnSOD presequence did not protect the yeast cells deficient in MnSOD against oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The serine/threonine kinase LKB1 is a regulator of critical events including development and stress responses in metazoans. The current study was undertaken to determine the function of LKB1 in Dictyostelium . During multicellular development and in response to stress insult, an apparent increase in the DdLKB1 kinase activity was observed. Depletion of DdLKB1 with a knockdown construct led to aberrant development; a severe reduction in prespore cell differentiation and a precocious induction of prestalk cells, which were reminiscent of cells lacking GSK3, a well known cell-fate switch. Furthermore, DdLKB1 depleted cells displayed lower GSK3 activity than wild type cells in response to cAMP stimulation during development and failed to activate AMPK, a well known LKB1 target in mammals, in response to cAMP and stress insults. These results suggest that DdLKB1 positively regulates both GSK3 and AMPK during Dictyostelium development, and DdLKB1 is necessary for AMPK activation during stress response regulation. No apparent GSK3 activation was observed in response to stress insults. Spatial and temporal regulation of phosphatidylinositol-(3,4,5)-triphosphate (PIP3) along the membrane of polarized cells is important for efficient chemotaxis. A REMI screen for PIP3 suppressors in the absence of stimulation led to the identification of SodC as PIP3 regulator. Consistent with their higher PIP3 levels, sodC− cells showed defects in chemotaxis and exhibited higher intra-cellular superoxide levels. Protein localization studies along with observations from GPI specific PI-PLC treatment of wild-type cells suggested that SodC is a GPI anchored outer-membrane protein. SodC showed superoxide dismutase activity in vitro, and motility defects of sodC− cells can be rescued by expressing the intact SodC but not by the mutant SodC, which has point mutations that affect its dismutase function. Treatment of sodC− cells with LY294002, a pharmacological inhibitor of PI3K, partially rescued the polarization and chemoattractant sensing defects but not motility defects. Consistent with increased intracellular superoxide levels, sodC − cells also exhibited higher basal Ras activity, an upstream regulator of PI3K, which can be suppressed by a cell permeable superoxide scavenger, XTT, indicating that SodC is important in regulation of intracellular superoxide levels thereby regulating the Ras activity and PIP3 levels at the membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The serine/threonine kinase LKB1 is a regulator of critical events including development and stress responses in metazoans. The current study was undertaken to determine the function of LKB1 in Dictyostelium. During multicellular development and in response to stress insult, an apparent increase in the DdLKB1 kinase activity was observed. Depletion of DdLKB1 with a knockdown construct led to aberrant development; a severe reduction in prespore cell differentiation and a precocious induction of prestalk cells, which were reminiscent of cells lacking GSK3, a well known cell-fate switch. Furthermore, DdLKB1 depleted cells displayed lower GSK3 activity than wild type cells in response to cAMP stimulation during development and failed to activate AMPK, a well known LKB1 target in mammals, in response to cAMP and stress insults. These results suggest that DdLKB1 positively regulates both GSK3 and AMPK during Dictyostelium development, and DdLKB1 is necessary for AMPK activation during stress response regulation. No apparent GSK3 activation was observed in response to stress insults. Spatial and temporal regulation of phosphatidylinositol-(3,4,5)-triphosphate (PIP3) along the membrane of polarized cells is important for efficient chemotaxis. A REMI screen for PIP3 suppressors in the absence of stimulation led to the identification of SodC as PIP3 regulator. Consistent with their higher PIP3 levels, sodC- cells showed defects in chemotaxis and exhibited higher intra-cellular superoxide levels. Protein localization studies along with observations from GPI specific PI-PLC treatment of wild-type cells suggested that SodC is a GPI anchored outer-membrane protein. SodC showed superoxide dismutase activity in vitro, and motility defects of sodC- cells can be rescued by expressing the intact SodC but not by the mutant SodC, which has point mutations that affect its dismutase function. Treatment of sodC- cells with LY294002, a pharmacological inhibitor of PI3K, partially rescued the polarization and chemoattractant sensing defects but not motility defects. Consistent with increased intracellular superoxide levels, sodC- cells also exhibited higher basal Ras activity, an upstream regulator of PI3K, which can be suppressed by a cell permeable superoxide scavenger, XTT, indicating that SodC is important in regulation of intracellular superoxide levels thereby regulating the Ras activity and PIP3 levels at the membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative stress plays a key role in the development of Type 2 Diabetes (T2D). This cross-sectional study examined the relationship among serum levels of manganese superoxide dismutase (MnSOD), 8-hydroxy-2’-deoxyguanosine (8OHdG), dietary antioxidant intakes and glycemic control in African Americans (n=209) and Haitian Americans (n=234) with and without T2D. ^ African Americans had higher BMI (32.8 vs. 29.3 kg/m2), higher energy intake (2148 vs. 1770 kcal), and were more educated as compared to Haitian Americans; all variables were significant at p < .001. Serum levels of 8OHdG and MnSOD for African Americans (1691.0 ± 225.1 pg/ml, 2538.0 ± 1091.8 pg/ml; respectively) were significantly higher than for Haitian Americans (1626.2 ± 222.9, 2015.8 ± 656.3 pg/ml; respectively). 8OHdG was negatively correlated with MnSOD ( r = -.167, p < .001) in T2D. Having T2D was negatively correlated with MnSOD (r = -.337; p < .01) and positively correlated with 8OHdG (r = .500; p < .01). African Americans and Haitian Americans with T2D had fasting plasma glucose (FPG) levels of 143.0 ± 61.0 mg/dl and 157.6 ± 65.5 mg/dl, and A1C of 7.5 ± 1.8 % and 8.4 ± 2.4 %, respectively. African Americans and Haitian Americans without T2D had FPG levels of 95.8 ± 13.2 mg/dl and 98.7 ± 16.9 mg/dl, and A1C of 5.9 ± 0.4% and 6.0 ± 0.5%, respectively. Dietary intakes of vitamin C and vitamin D were negatively correlated with FPG (r = -.21; r = -.19, p < .05) respectively. Carotenoids negatively correlated with A1C (r = -.19, p < .05). Lower levels of MnSOD were associated with lower levels of zinc, r = .10, p < .05, and higher levels of carotenoids r = -.10, p < .05. Higher levels of 8OHdG were associated with lower levels of Vitamin D, r = -.14, p < .01, and carotenoids, r = -.09, p < .05. ^ The results demonstrate greater oxidative mtDNA damage in persons with T2D compared to those without T2D and in African Americans compared with Haitian Americans. The inverse relationship between dietary intake of antioxidants and oxidative stress implies a potential to reduce oxidative stress with diet. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements We thank Philippe Bolifraud (INRA, France), Krawiec Angele, Sandra Grange, Laurence Puillet-Anselme (CHU Grenoble, France) and Margaret Fraser (Aberdeen, UK) for their expert technical assistance. The authors also thank the staff of the sheep sheds of Jouy-en-Josas (INRA, France). The authors would also like to thank the anonymous reviewers for their close examination of this article and their useful comments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative stress plays a key role in the development of Type 2 Diabetes (T2D). This cross-sectional study examined the relationship among serum levels of manganese superoxide dismutase (MnSOD), 8-hydroxy-2’-deoxyguanosine (8OHdG), dietary antioxidant intakes and glycemic control in African Americans (n=209) and Haitian Americans (n=234) with and without T2D. African Americans had higher BMI (32.8 vs. 29.3 kg/m2), higher energy intake (2148 vs. 1770 kcal), and were more educated as compared to Haitian Americans; all variables were significant at p < .001. Serum levels of 8OHdG and MnSOD for African Americans (1691.0 ± 225.1 pg/ml, 2538.0 ± 1091.8 pg/ml; respectively) were significantly higher than for Haitian Americans (1626.2 ± 222.9, 2015.8 ± 656.3 pg/ml; respectively). 8OHdG was negatively correlated with MnSOD (r = -.167, p < .001) in T2D. Having T2D was negatively correlated with MnSOD (r = -.337; p < .01) and positively correlated with 8OHdG (r = .500; p < .01). African Americans and Haitian Americans with T2D had fasting plasma glucose (FPG) levels of 143.0 ± 61.0 mg/dl and 157.6 ± 65.5 mg/dl, and A1C of 7.5 ± 1.8 % and 8.4 ± 2.4 %, respectively. African Americans and Haitian Americans without T2D had FPG levels of 95.8 ± 13.2 mg/dl and 98.7 ± 16.9 mg/dl, and A1C of 5.9 ± 0.4% and 6.0 ± 0.5%, respectively. Dietary intakes of vitamin C and vitamin D were negatively correlated with FPG (r = -.21; r = -.19, p < .05) respectively. Carotenoids negatively correlated with A1C (r = -.19, p < .05). Lower levels of MnSOD were associated with lower levels of zinc, r = .10, p < .05, and higher levels of carotenoids r = -.10, p < .05. Higher levels of 8OHdG were associated with lower levels of Vitamin D, r = -.14, p < .01, and carotenoids, r = -.09, p < .05. The results demonstrate greater oxidative mtDNA damage in persons with T2D compared to those without T2D and in African Americans compared with Haitian Americans. The inverse relationship between dietary intake of antioxidants and oxidative stress implies a potential to reduce oxidative stress with diet. African Americans were significantly younger (53.3 vs. 55.6 years), had higher BMI (32.8 vs. 29.3 kg/m2), higher energy intake (2148 vs. 1770 kcal), and were more educated as compared to Haitian Americans; all variables were significant at p < .001. Serum levels of 8OHdG and MnSOD for African Americans (1691.0 ± 225.1 pg/ml, 2538.0 ± 1091.8 pg/ml; respectively) were significantly higher than for Haitian Americans (1626.2 ± 222.9, 2015.8 ± 656.3 pg/ml; respectively). 8OHdG was negatively correlated with MnSOD (r = -.167, p < .001) in T2D. Having T2D was negatively correlated with MnSOD (r = -.337; p < .01) and positively correlated with 8OHdG (r = .500; p < .01). African Americans and Haitian Americans with T2D had fasting plasma glucose (FPG) levels of 143.0 ± 61.0 mg/dl and 157.6 ± 65.5 mg/dl, and A1C of 7.5 ± 1.8 % and 8.4 ± 2.4 %, respectively. African Americans and Haitian Americans without T2D had FPG levels of 95.8 ± 13.2 mg/dl and 98.7 ± 16.9 mg/dl, and A1C of 5.9 ± 0.4% and 6.0 ± 0.5%, respectively. Dietary intakes of vitamin C and vitamin D were negatively correlated with FPG (r = -.21; r = -.19, p < .05) respectively. Carotenoids negatively correlated with A1C (r = -.19, p < .05). Lower levels of MnSOD were associated with lower levels of zinc, r = .10, p < .05, and higher levels of carotenoids r = -.10, p < .05. Higher levels of 8OHdG were associated with lower levels of Vitamin D, r = -.14, p < .01, and carotenoids, r = -.09, p < .05. The results demonstrate greater oxidative mtDNA damage in persons with T2D compared to those without T2D and in African Americans compared with Haitian Americans. The inverse relationship between dietary intake of antioxidants and oxidative stress implies a potential to reduce oxidative stress with diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dictyostelium discoideum is a simple model organism that can be used to study endocytic pathways such as phagocytosis and macropinocytosis because of its homology to cells of the mammalian innate immune system, namely macrophages and neutrophils. Consequently, Dictyostelium can also be used to study the process of exocytosis. In our laboratory, we generated Dictyostelium cells lacking superoxide dismutase SodC. Our data suggest that cells that lack SodC are defective in macropinocytosis and exocytosis when compared to wild type cells. In this study I describe a regulatory mechanism of macropinocytosis by SodC via regulation of RasG, which in turn controls PI3K activation and thus macropinocytosis. Our results show that proper metabolism of superoxide is critical for efficient particle uptake, for the proper trafficking of internalized particles, and a timely exocytosis of fluid uptake in Dictyostelium cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fact that nature provides specific enzymes to selectively remove superoxide (O2.−) from aerobic organisms, namely, the superoxide dismutase enzymes,1 has led to the suggestion that this radical ion may cause the oxidative damage associated with degradative disease and aging.2 Intriguingly, however, superoxide itself is relatively unreactive toward most cellular components, which suggests that dismutase enzymes may ultimately protect the cell against more pernicious oxidants formed from superoxide. As such, there is increasing interest in the endogenous chemistry of superoxide and the pathways by which it might beget more reactive oxygen species. Protonation of superoxide to form the hydroperoxyl radical (HOO.) and dismutation of the same species to hydrogen peroxide (HOOH), with subsequent metal-catalyzed reduction to the hydroxyl radical (HO.), are well-characterized processes in which both the HOO. and HO. radicals are significantly more reactive than their common progenitor.2 Recent examples, however, have also linked superoxide to the putative production of singlet oxygen3 and ozone,4, 5 although the definitive characterization of these chemistries in the cellular milieu has proved challenging

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sulphoxidation of compounds capable of undergoing biological sulphoxidation has been demonstrated in a model system (NADH–phenazine methosulphate–O2), known to generate superoxide anions (O2-). Addition of superoxide dismutase to this system results in complete inhibition, suggesting the involvement of O2- in sulphoxidation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mechanism of hydroxylation reactions catalyzed by m-hydroxybenzoate-4-hydroxylase and anthranilate hydroxylase from Aspergillus niger was investigated using superoxide dismutase from ovine erythrocytes. Inclusion of superoxide dismutase in the assay mixtures of the two enzymes resulted in complete inhibition of the hydroxylation reaction, indicating the possible involvement of superoxide anions (O2−) in these reactions.