968 resultados para Super-redes Hubbard - Multicamadas magnéticas


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, we investigated the magnonic and photonic structures that exhibit the so-called deterministic disorder. Speci cally, we studied the effects of the quasiperiodicity, associated with an internal structural symmetry, called mirror symmetry, on the spectra of photonics and magnonics multilayer. The quasiperiodicity is introduced when stacked layers following the so-called substitutional sequences. The three sequences used here were the Fibonacci sequence, Thue-Morse and double-period, all with mirror symmetry. Aiming to study the propagation of light waves in multilayer photonic, and spin waves propagation in multilayer magnonic, we use a theoretical model based on transfer matrix treatment. For the propagation of light waves, we present numerical results that show that the quasiperiodicity associated with a mirror symmetry greatly increases the intensity of transmission and the transmission spectra exhibit a pro le self-similar. The return map plotted for this system show that the presence of internal symmetry does not alter the pattern of Fibonacci maps when compared with the case without symmetry. But when comparing the maps of Thue-Morse and double-time sequences with their case without the symmetry mirror, is evident the change in the pro le of the maps. For magnetic multilayers, we work with two di erent systems, multilayer composed of a metamagnetic material and a non-magnetic material, and multilayers composed of two cubic Heisenberg ferromagnets. In the rst case, our calculations are carried out in the magnetostatic regime and calculate the dispersion relation of spin waves for the metamgnetic material considered FeBr2. We show the e ect of mirror symmetry in the spectra of spin waves, and made the analysis of the location of bulk bands and the scaling laws between the full width of the bands allowed and the number of layers of unit cell. Finally, we calculate the transmission spectra of spin waves in quasiperiodic multilayers consisting of Heisenberg ferromagnets. The transmission spectra exhibit self-similar patterns, with regions of scaling well-de ned in frequency and the return maps indicates only dependence of the particular sequence used in the construction of the multilayer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study the spectrum (bulk and surface modes) of exciton-polaritons in infinite and semi-infinite binary superlattices (such as, ···ABABA···), where the semiconductor medium (A), whose dielectric function depends on the frequency and the wavevector, alternating with a standard dielectric medium B. Here the medium A will be modeled by a nitride III-V semiconductor whose main characteristic is a wide-direct energy gap Eg. In particular, we consider the numerical values of gallium nitride (GaN) with a crystal structure wurtzite type. The transfer-matrix formalism is used to find the exciton-polariton dispersion relation. The results are obtained for both s (TE mode: transverse electric) and p (TM mode: transverse magnetic) polarizations, using three diferent kind of additional boundary conditions (ABC1, 2 e 3) besides the standard Maxwell's boundary conditions. Moreover, we investigate the behavior of the exciton-polariton modes for diferent ratios of the thickness of the two alternating materials forming the superlattice. The spectrums shows a confinement of the exciton-polariton modes due to the geometry of the superlattice. The method of Attenuated Total Reflection (ATR) and Raman scattering are the most adequate for probing this excitations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study, for two different growth directions, multilayers of nanometric magnetic metallic lms grown, using Fibonacci sequences, in such a way that the thickness of the non-magnetic spacer may vary from a pair of lms to another. We applied a phenomenological theory that uses the magnetic energy to describe the behavior of the system. After we found numerically the global minimum of the total energy, we used the equilibrium angles to obtain magnetization and magnetoresistance curves. Next, we solved the equation of motion of the multilayers to nd the dispersion relation for the system. The results show that, when spacers are used with thickness so that the biquadratic coupling is strong in comparison to the bilinear one, non usual behaviors for both magnetization and magnetoresistance are observed. For example, a dependence on the parity of the Fibonacci generation utilized for constructing the system, a low magnetoresistance step in low external magnetic fields and regions that show high sensibility to small variations of the applied field. Those behaviors are not present in quasiperiodic magnetic multilayers with constant spacer thickness

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic multilayers are the support for the production of spintronic devices, representing great possibilities for miniaturized electronics industry. having the control to produce devices as well as their physical properties from simple multilayer films to highly complex at the atomic scale is a fundamental need for progress in this area, in recent years has highlighted the production of organic and flexible spintronic devices. Because of this trend, the objective of this work was to produce magnetic multilayers deposited on flexible substrate using magnetron sputtering dc technique. Three sets of samples were prepared. The first set composed of the trilayer type CoFe=Cu(t)=CoFe with different thickness of the metallic spacer. The second set consists of two multilayer subgroups, CoFe=Cu in the presence of IrMn layer as a buffer and the next multilayer as cap layer. The third set consisting of non-magnetostrictive multilayer permalloy (Py=Ta and Py=Ag) on flexible substrate and glass. The magnetic properties, were investigated by magnetometry measurements, ferromagnetic resonance and magnetoimpedance (MI), measurements were carried out at room temperature with the magnetic field always applied on the sample plane. For structural analysis, the diffraction X-ray was used. The results of the trilayer showed a high uniaxial anisotropy field for the sample with a spacer of 4.2 nm. For the multilayer in the presence of IrMn layer as the buffer, the study of static and dynamic magnetic properties showed isotropic behavior. For the multilayer in the presence of IrMn layer as a cap, the results of static magnetic properties of the magnetic behavior exhibited a spin valve structure type. However there was a disagreement with results of ferromagnetic resonance measurements, which was justified by the contribution of the unstable and stable grain to the rotatable anisotropy and Exchange bias in ferromagneticantiferromagnetic interface. The third serie of samples showed similar results behavior for the MI Ag multilayers spacer in both substrates. There are also significant MI changes with the Ta spacer, possible associated with the compressive stress on the flexible substrate sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nos últimos 10 anos, o desenvolvimento de técnicas de deposição e seus equipamentos permitiu o surgimento de novos tipos de filmes finos, principalmente voltados para aplicações mecânicas e tribológicas, que são multicamadas nanoestruturadas. Esses revestimentos apresentam propriedades que não são diretamente ligadas as propriedades das camadas individuais de cada material, geralmente apresentando valores de dureza extremamente elevados relacionados a um período de modulação crítico ΛC. Esses filmes demonstram um claro potencial para aplicações tribológicas mesmo com o seu comportamento de dureza ainda não completamente esclarecido. O objetivo deste trabalho é produzir multicamadas nanoestruturadas do tipo metal / nitreto pela técnica de magnetron sputtering usando Nb, Ta e TiN, visando obter uma estrutura com valores de dureza extremamente elevados, tipicamente observados em revestimentos do tipo super-redes. A estrutura periódica dos revestimentos com baixo valor de Λ (< 10 nm) foi caracterizada por XRR (Refletividade por Difração de Raios X) e por RBS (Espectrometria por Retroespalhamento Rutherford) para os valores altos de Λ. As propriedades mecânicas dos revestimentos foram avaliadas por testes instrumentados de dureza usando um equipamento Fischerscope HV100. Todas as multicamadas foram produzidas com sucesso e apresentaram uma periodicidade bem definida, o que foi confirmado pelos resultados de RBS e XRR. Os valores de dureza medidos apresentaram um comportamento tipicamente observado em superredes com um valor máximo maior que 50 GPa sempre relacionado a uma valor crítico de Λ. O valor ΛC foi 8 nm para as amostras de Nb/TiN e 4 nm para as amostras de Ta/TiN. A razão H/E indicou que o revestimento nanoestruturado mais adequado para aplicações tribológicas foram as multicamadas com maior valor de dureza. Esses resultados mostraram claramente a possibilidade de aplicação industrial destes revestimentos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work develops a robustness analysis with respect to the modeling errors, being applied to the strategies of indirect control using Artificial Neural Networks - ANN s, belong to the multilayer feedforward perceptron class with on-line training based on gradient method (backpropagation). The presented schemes are called Indirect Hybrid Control and Indirect Neural Control. They are presented two Robustness Theorems, being one for each proposed indirect control scheme, which allow the computation of the maximum steady-state control error that will occur due to the modeling error what is caused by the neural identifier, either for the closed loop configuration having a conventional controller - Indirect Hybrid Control, or for the closed loop configuration having a neural controller - Indirect Neural Control. Considering that the robustness analysis is restrict only to the steady-state plant behavior, this work also includes a stability analysis transcription that is suitable for multilayer perceptron class of ANN s trained with backpropagation algorithm, to assure the convergence and stability of the used neural systems. By other side, the boundness of the initial transient behavior is assured by the assumption that the plant is BIBO (Bounded Input, Bounded Output) stable. The Robustness Theorems were tested on the proposed indirect control strategies, while applied to regulation control of simulated examples using nonlinear plants, and its results are presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a study of nanostructured magnetic multilayer systems in order to syn- thesize and analyze the properties of periodic and quasiperiodic structures. This work evolved from the deployment and improvement of the sputtering technique in our labora- tories, through development of a methodology to synthesize single crystal ultrathin Fe (100) films, to the final goal of growing periodic and quasiperiodic Fe/Cr multilayers and investi- gating bilinear and biquadratic exchange coupling between ferromagnetic layer dependence for each generation. Initially we systematically studied the related effects between deposition parameters and the magnetic properties of ultrathin Fe films, grown by DC magnetron sput- tering on MgO(100) substrates. We modified deposition temperature and film thickness, in order to improve production and reproduction of nanostructured monocrystalline Fe films. For this set of samples we measured MOKE, FMR, AFM and XPS, with the aim of investi- gating their magnocrystalline and structural properties. From the magnetic viewpoint, the MOKE and FMR results showed an increase in magnetocrystalline anisotropy due to in- creased temperature. AFM measurements provided information about thickness and surface roughness, whereas XPS results were used to analyze film purity. The best set of parame- ters was used in the next stage: investigation of the structural effect on magnetic multilayer properties. In this stage multilayers composed of interspersed Fe and Cr films are deposited, following the Fibonacci periodic and quasiperiodic growth sequence on MgO (100) substrates. The behavior of MOKE and FMR curves exhibit bilinear and biquadratic exchange coupling between the ferromagnetic layers. By computationally adjusting magnetization curves, it was possible to determine the nature and intensity of the interaction between adjacent Fe layers. After finding the global minimum of magnetic energy, we used the equilibrium an- gles to obtain magnetization and magnetoresistance curves. The results observed over the course of this study demonstrate the efficiency and versatility of the sputtering technique in the synthesis of ultrathin films and high-quality multilayers. This allows the deposition of magnetic nanostructures with well-defined magnetization and magnetoresistance parameters and possible technological applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is presently a worldwide interest in artificial magnetic systems which guide research activities in universities and companies. Thin films and multilayers have a central role, revealing new magnetic phases which often lead to breakthroughs and new technology standards, never thought otherwise. Surface and confinement effects cause large impact in the magnetic phases of magnetic materials with bulk spatially periodic patterns. New magnetic phases are expected to form in thin film thicknesses comparable to the length of the intrinsic bulk magnetic unit cell. Helimagnetic materials are prototypes in this respect, since the bulk magnetic phases consist in periodic patterns with the length of the helical pitch. In this thesis we study the magnetic phases of thin rare-earth films, with surfaces oriented along the (002) direction. The thesis includes the investigation of the magnetic phases of thin Dy and Ho films, as well as the thermal hysteresis cycles of Dy thin films. The investigation of the thermal hysteresis cycles of thin Dy films has been done in collaboration with the Laboratory of Magnetic Materials of the University of Texas, at Arlington. The theoretical modeling is based on a self-consistent theory developed by the Group of Magnetism of UFRN. Contributions from the first and second neighbors exchange energy, from the anisotropy energy and the Zeeman energy are calculated in a set of nonequivalent magnetic ions, and the equilibrium magnetic phases, from the Curie temperature up to the Nèel temperature, are determined in a self-consistent manner, resulting in a vanishing torque in the magnetic ions at all planes across the thin film. Our results reproduce the known isothermal and iso-field curves of bulk Dy and Ho, and the known spin-slip phases of Ho, and indicate that: (i) the confinement in thin films leads to a new magnetic phase, with alternate helicity, which leads to the measured thermal hysteresis of Dy ultrathin films, with thicknesses ranging from 4 nm to 16 nm; (ii) thin Dy films have anisotropy dominated surface lock-in phases, with alignment of surface spins along the anisotropy easy axis directions, similar to the known spin-slip phases of Ho ( which form in the bulk and are commensurate to the crystal lattice); and (iii) the confinement in thin films change considerably the spin-slip patterns of Ho.