976 resultados para Structural stability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural stability of small sized nonstoichiometric CdS nano clusters between zincblende and wurtzite structures has been investigated using first-principles density functional calculations. Our study shows that the relative stability of these two structures depends sensitively on whether the surface is S-terminated or Cd-terminated. The associated band gap also exhibits non-monotonic behavior as a function of cluster size. Our findings may shed light on contradictory reports of experimentally observed structures of CdS nano clusters found in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract L-14, a 14-kDa S-type lectin shows the jelly roll tertiary structural fold akin to legume lectins yet, unlike them, it does not dissociate on thermal unfolding. In the absence of ligand L-14 displays denaturation transitions corresponding to tetrameric and octameric entities. The presence of complementary ligand reduces the association of L-14, which is in stark contrast with legume lectins where no alterations in quaternary structures are brought about by saccharides. From the magnitude of the increase in denaturation temperature induced by disaccharides the binding constants calculated from differential scanning calorimetry are comparable with those extrapolated from titration calorimetry indicating that L-14 interacts with ligands essentially in the folded state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed mechanics based model is developed to analyze the problem of structural instability in slender aerospace vehicles. Coupling among the rigid-body modes, the longitudinal vibrational modes and the transverse vibrational modes due to asymmetric lifting-body cross-section are considered. The model also incorporates the effects of aerodynamic pressure and the propulsive thrust of the vehicle. The model is one-dimensional, and it can be employed to idealized slender vehicles with complex shapes. Condition under which a flexible body with internal stress waves behaves like a perfect rigid body is derived. Two methods are developed for finite element discretization of the system: (1) A time-frequency Fourier spectral finite element method and (2) h-p finite element method. Numerical results using the above methods are presented in Part II of this paper. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The title compound, dirubidium tricadmium tris(sulfate) dihydroxide dihydrate, consists of sheets of CdO6 octahedra and sulfate tetrahedra propagating in the (100) plane, with Rb+ ions in the interlayer positions. It is isostructural with K2Co3(SO4)(3)(OH)(2)(.)2H(2)O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A first-principles study was carried out to investigate the stability of the crystal structure of beta-form belite (beta-C2S) substituted by Sr atoms as trace impurities for Ca atoms in CaOx polyhedra. The effect of the connection types of CaOx polyhedral, in the form of common-edge bond and common-face bond, upon the crystal stability is described. The Ca-Ca interatomic distance closely relates to the hydraulic activity of beta-C2S. The beta-C2S substituted by an Sr atom for Ca(1) atoms having seven Ca-O bonds is energetically more stable than that substituted by an Sr atom for Ca(2) atoms having eight Ca-O bonds. The Sr-doped beta-C2S having a common face bond with SrOx polyhedra is energetically more favorable and results in structural stability compared with that having a common edge bond with SrOx polyhedra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the discovery 1] of gamma' precipitate (L1(2) - Co-3 (Al, W)) in the Co-Al-W ternary system, there has been an increased interest in Co-based superalloys. Since these alloys have two phase microstructures (gamma + gamma') similar to Ni-based superalloys 2], they are viable candidates in high temperature applications, particularly in land-based turbines. The role of alloying on stability of the gamma' phase has been an active area of research. In this study, electronic structure calculations were done to probe the effect of alloying in Co3W with L1(2) structure. Compositions of type Co-3(W, X), (where X/Y = Mn, Fe, Ni, Pt, Cr, Al, Si, V, W, Ta, Ti, Nb, Hf, Zr and Mo) were studied. Effect of alloying on equilibrium lattice parameters and ground state energies was used to calculate Vegard's coefficients and site preference related data. The effect of alloying on the stability of the L1(2) structure vis a vis other geometrically close packed ordered structures was also studied for a range of Co3X compounds. Results suggest that the penchant of element for the W sublattice can be predicted by comparing heats of formation of Co3X in different structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melt spun ribbons of Fe95-x Zr (x) B4Cu1 with x = 7 (Z7B4) and 9 (Z9B4) alloys have been prepared, and their structure and magnetic properties have been evaluated using XRD, DSC, TEM, VSM, and Mossbauer spectroscopy. The glass forming ability (GFA) of both alloys has been calculated theoretically using thermodynamical parameters, and Z9B4 alloy is found to possess higher GFA than that of Z7B4 alloy which is validated by XRD results. On annealing, the amorphous Z7B4 ribbon crystallizes into nanocrystalline alpha-Fe, whereas amorphous Z9B4 ribbon shows two-stage crystallization process, first partially to bcc solid solution which is then transformed to nanocrystalline alpha-Fe and Fe2Zr phases exhibiting bimodal distribution. A detailed phase analysis using Mossbauer spectroscopy through hyperfine field distribution of phases has been carried out to understand the crystallization behavior of Z7B4 and Z9B4 alloy ribbons. In order to understand the phase transformation behavior of Z7B4 and Z9B4 ribbons, molar Gibbs free energies of amorphous, alpha-Fe, and Fe2Zr phases have been evaluated. It is found that in case of Z7B4, alpha-Fe is always a stable phase, whereas Fe2Zr is stable at higher temperature for Z9B4. (C) The Minerals, Metals & Materials Society and ASM International 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the effects of thermal annealing performed in N2 or O2 ambient at 1200 °C on the structural and optical properties of Er silicate films having different compositions (Er2Si O 5,Er2 Si2 O7, and their mixture). We demonstrate that the chemical composition of the stoichiometric films is preserved after the thermal treatments. All different crystalline structures formed after the thermal annealing are identified. Thermal treatments in O 2 lead to a strong enhancement of the photoluminescence intensity, owing to the efficient reduction of defect density. In particular the highest optical efficiency is associated to Er ions in the α phase of Er 2 Si2 O7. © 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural stability of C-60 films under the bombardment of 1.95 GeV Kr ions is investigated. The irradiated C-60 films were analyzed by Fourier Transform Infrared (FTIR) spectroscopy and Raman scattering technique. The analytical results indicate that the irradiation induced a decrease of icosahedral symmetry of C-60 molecule and damage of C-60 films; different vibration modes of C-60 molecule have different irradiation sensitivities; the mean efficient damage radius obtained from experimental data is about 1.47 nm, which is in good agreement with thermal spike model prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the structural stability and electronic properties of ordered perovskite-type compounds Ba2MIrO6 (M = La, Y) by use of density functional theory. Cubic (Fm-3m), rhombohedral (R-3) and monoclinic (P2(1)/n) phases are considered for each compound. It was found that the most energetically stable phase for Ba2YIrO6 and Ba2LaIrO6 is P2(1)/n andR-3, respectively. It is also interesting to find that Ba2YIrO6 in R-3 phase, which was not reported in experiment, has a slightly lower energy than experimentally observed cubic Fm-3m phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural stability and electronic properties of Co2N, Rh2N and Ir2N were Studied by using the first principles based on the density functional theory. Two Structures were considered for each nitride, orthorhombic Pnnm phase and cubic Pa (3) over bar phase. The results show that they are all mechanically stable. Co2N in both phases are thermodynamically stable due to the negative formation energy, while the remaining two compounds are thermodynamically unstable.