965 resultados para Strength training


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 d⋅wk–1), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P<0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P<0.05) but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10−30%) and paired box protein (Pax7)(20−50%) increased 24–48 h after exercise with ACT. The number of NCAM+ satellitecells increased 48 h after exercise with CWI. NCAM+- and Pax7+-positivesatellite cell numbers were greater after ACT than after CWI (P<0.05). Phosphorylation of p70S6 kinaseThr421/Ser424 increased after exercise in both conditions but was greater after ACT (P<0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the study was to quantify the strength of motor unit synchronization and coherence from pairs of concurrently active motor units before and after short-term (4–8 weeks) strength training of the left first dorsal interosseous (FDI) muscle. Five subjects (age 24.8 ± 4.3 years) performed a training protocol three times/week that consisted of six sets of ten maximal isometric index finger abductions, whereas three subjects (age 27.3 ± 6.7 years) acted as controls. Motor unit activity was recorded from pairs of intramuscular electrodes in the FDI muscle with two separate motor unit recording sessions obtained before and after strength training (trained group) or after 4 weeks of normal daily activities that did not involve training (control group). The training intervention resulted in a 54% (45.2 ± 8.3 to 69.5 ± 13.8 N, P = 0.001) increase in maximal index finger abduction force, whereas there was no change in strength in the control group. A total of 163 motor unit pairs (198 single motor units) were examined in both subject groups, with 52 motor unit pairs obtained from 10 recording sessions before training and 51 motor unit pairs from 10 recording sessions after training. Using the cross-correlation procedure, there was no change in the strength of motor unit synchronization following strength training (common input strength index; 0.71 ± 0.41 to 0.67 ± 0.43 pulses/s). Furthermore, motor unit coherence z scores at low (0–10 Hz; 3.9 ± 0.3 before to 4.4 ± 0.4 after) or high (10–30 Hz; 1.7 ± 0.1 before to 1.9 ± 0.1 after) frequencies were not influenced by strength training. These motor unit data indicate that increases in strength following several weeks of training a hand muscle are not accompanied by changes in motor unit synchronization or coherence, suggesting that these features of correlated motor unit activity are not important in the expression of muscle strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose : This study examined whether a community-based progressive resistance strength training programme could improve muscle strength and functional activity in a group of adults with cerebral palsy with high support needs.

Method : Using a single group pre-post clinical design, 10 adults (7 males, 3 females; mean age 47.8 SD 5.7 years) with cerebral palsy and high support needs completed 4 weeks of introduction and familiarization, followed by a 10-week progressive resistance strength training programme in a community gymnasium. Participants were measured for muscle strength, locomotion speed and timed sit-to-stand.

Results : After establishment of a stable baseline from weeks 2 to 5 with no systematic change and a high degree of association ( r  > 0.86), participants increased leg strength by 22.0% ( p  = 0.02), arm strength by 17.2% ( p  = 0.01) and improved performance of sit-to-stand ( p  = 0.02) during the 10-week strength training intervention.

Conclusions : This study adds to the accumulating evidence that strength training can be beneficial for people with cerebral palsy by demonstrating benefits for adults with cerebral palsy and high support needs who are subject to decline in physical function associated with the ageing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To explore the positive and negative perceptions of participating in a strength- training programme for adults with cerebral palsy.

Method: Ten adults aged over 40 years with cerebral palsy participated in a group-based 10-week progressive resistance strength-training programme in a community gymnasium. After the programme, each participant was interviewed using an in-depth semi-structured format and the results coded thematically.

Results: Participants perceived that their strength, and ability to perform everyday activities had improved. However, the main benefit for participants was enjoyment and social interaction. The only negative perceptions related to fatigue, short-term muscle soreness and a feeling that they had not improved as much as they had expected.

Conclusions: Enjoyment, a factor that can promote adherence and sustainability, was a key benefit of this strength-training programme for adults with cerebral palsy that led to perceptions of increased strength and physical functioning. These findings suggest that exercise programmes for adults with cerebral palsy should be conducted in a group in the community, thereby promoting community inclusion. In addition, it is important to provide education to participants about the normal responses and expectations of an exercise programme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neural adaptations that mediate the increase in strength in the early phase of a strength training program are not well understood; however, changes in neural drive and corticospinal excitability have been hypothesized. To determine the neural adaptations to strength training, we used transcranial magnetic stimulation (TMS) to compare the effect of strength training of the right elbow flexor muscles on the functional properties of the corticospinal pathway. Motorevoked potentials (MEPs) were recorded from the right biceps brachii (BB) muscle from 23 individuals (training group; n = 13 and control group; n = 10) before and after 4 weeks of progressive overload strength training at 80% of 1-repetition maximum (1 RM). The TMS was delivered at 10% of the root mean square electromyographic signal (rmsEMG) obtained from a maximal voluntary contraction (MVC) at intensities of 5% of stimulator output below active motor threshold (AMT) until saturation of the MEP (MEP maxl. Strength training resulted in a 28% (p = 0.0001) increase in 1 RM strength, and this was accompanied by a 53% increase (p = 0.05) in the amplitude of the MEP at AMT; 33% (p = 0.05) increase in MEP at 20% above AMT, and a 38% increase at MEPmax (p = 0.04). There were no significant differences in the estimated slope (p = 0.4 7) or peak slope of the stimulus-response curve for the left primary motor cortex (M1) after strength training (p = 0.61). These results demonstrate that heavy-load isotonic strength training alters neural transmission via the corticospinal pathway projecting to the motoneurons controlling BB and in part underpin the strength changes observed in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contralateral transfer of strength following unilateral strength training (ULS) is thought to be due to changes within the nervous system. Using transcranial magnetic stimulation (TMS) we compared corticospinal responses following ULS of the right biceps brachii (BB) projecting to the untrained left BB. Motor evoked potentials (MEPs) were recorded from both BB of 23 individuals pre and post 4 weeks heavy load (80% of 1RM) ULS of right BB. TMS was delivered at intensities below active motor threshold (AMT) to saturation of the MEP (MEPmax). ULS resulted in a 28% increase in 1RM right BB strength, resulting in a 19.2% increase in contralateral strength of the left BB (p = .0001). There was a significant increase in MEP amplitude of 30.3% (p = .03), 33% (p = .05), and 26.5% (p = .01) at AMT, 20% above AMT and MEPmax respectively. No significant differences in silent period were seen at AMT, 20% above AMT or MEPmax. This study has demonstrated increased corticospinal excitability projecting to the untrained arm following heavy load ULS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evidence for neural mechanisms underpinning rapid strength increases has been investigated and discussed for over 30 years using indirect methods, such as surface electromyography, with inferences made toward the nervous system. Alternatively, electrical stimulation techniques such as the Hoffman reflex, volitional wave, and maximal wave have provided evidence of central nervous system changes at the spinal level. For 25 years, the technique of transcranial magnetic stimulation (TMS) has allowed for noninvasive supraspinal measurement of the human nervous system in a number of areas such as fatigue, skill acquisition, clinical neurophysiology, and neurology. However, it has only been within the last decade that this technique has been used to assess neural changes after strength training. The aim of this brief review is to provide an overview of TMS, discuss specific strength training studies that have investigated changes, after short-term strength training in healthy populations in upper and lower limbs, and conclude with further research suggestions and the application of this knowledge for the strength and conditioning coach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study used transcranial magnetic stimulation to measure the corticospinal responses following 8 weeks of unilateral leg strength training. Eighteen healthy, non-strength trained participants (14 male, 4 female; 18–35 years of age) were matched for age, gender, and pre-training strength; and assigned to a training or control group. The trained group participated in unilateral horizontal leg press strength training, progressively overloaded and wave periodised, thrice per week for 8 weeks. Testing occurred prior to the intervention, at the end of 4 weeks and at the completion of training at 8 weeks. Participants were tested in both legs for one repetition maximum strength, muscle thickness, maximal electromyography (EMG) activity, and corticospinal excitability and inhibition. No changes were observed in muscle thickness in either leg. The trained leg showed an increase in strength of 21.2% (P = 0.001) and 29.0% (P = 0.007, compared to pre-testing) whilst the untrained contralateral leg showed 17.4% (P = 0.01) and 20.4% (P = 0.004, compared to pre-testing) increases in strength at 4 and 8 weeks, respectively. EMG and corticospinal excitability did not change; however, corticospinal inhibition was significantly reduced by 17.7 ms (P = 0.003) and 17.3 ms (P = 0.001) at 4 and 8 weeks, respectively, in the trained leg, and 25.1 ms (P = 0.001) and 20.8 ms (P = 0.001) at 4 and 8 weeks, respectively, in the contralateral untrained leg. This data support the theory of corticospinal adaptations underpinning cross-education gains in the lower limbs following unilateral strength training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross-education strength training has being shown to retain strength and muscle thickness in the immobilized contralateral limb. Corticospinal mechanisms have been proposed to underpin this phenomenon; however, no transcranial magnetic stimulation (TMS) data has yet been presented. This study used TMS to measure corticospinal responses following 3 weeks of unilateral arm training on the contralateral, immobilize arm. Participants (n = 28) were randomly divided into either immobilized strength training (Immob + train) immobilized no training (Immob) or control. Participants in the immobilized groups had their nondominant arm rested in a sling, 15 h/day for 3 weeks. The Immob + train group completed unilateral arm curl strength training, while the Immob and control groups did not undertake training. All participants were tested for corticospinal excitability, strength, and muscle thickness of both arms. Immobilization resulted in a group x time significant reduction in strength, muscle thickness and corticospinal excitability for the untrained limb of the Immob group. Conversely, no significant change in strength, muscle thickness, or corticospinal excitability occurred in the untrained limb of the Immob + train group. These results provide the first evidence of corticospinal mechanisms, assessed by TMS, underpinning the use of unilateral strength training to retain strength and muscle thickness following immobilization of the contralateral limb.