974 resultados para State feedback controllers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the problem of constructing a distributed feedback law to achieve synchronization for a group of k agents whose states evolve on SO(n) and which exchange only partial state information along communication links. The partial state information is given by the action of the state on reference vectors in ℝn. We propose a gradient based control law which achieves exponential local convergence to a synchronization configuration under a rank condition on a generalized Laplacian matrix. Furthermore, we discuss the case of time-varying reference vectors and provide a convergence result for this case. The latter helps reach synchronization, requiring less communication links and weaker conditions on the instantaneous reference vectors. Our methods are illustrated on an attitude synchronization problem where agents exchange only their relative positions observed in the respective body frames. ©2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a controller design scheme for a priori unknown non-linear dynamical processes that are identified via an operating point neurofuzzy system from process data. Based on a neurofuzzy design and model construction algorithm (NeuDec) for a non-linear dynamical process, a neurofuzzy state-space model of controllable form is initially constructed. The control scheme based on closed-loop pole assignment is then utilized to ensure the time invariance and linearization of the state equations so that the system stability can be guaranteed under some mild assumptions, even in the presence of modelling error. The proposed approach requires a known state vector for the application of pole assignment state feedback. For this purpose, a generalized Kalman filtering algorithm with coloured noise is developed on the basis of the neurofuzzy state-space model to obtain an optimal state vector estimation. The derived controller is applied in typical output tracking problems by minimizing the tracking error. Simulation examples are included to demonstrate the operation and effectiveness of the new approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical methods are described for determining robust, or well-conditioned, solutions to the problem of pole assignment by state feedback. The solutions obtained are such that the sensitivity of the assigned poles to perturbations in the system and gain matrices is minimized. It is shown that for these solutions, upper bounds on the norm of the feedback matrix and on the transient response are also minimized and a lower bound on the stability margin is maximized. A measure is derived which indicates the optimal conditioning that may be expected for a particular system with a given set of closed-loop poles, and hence the suitability of the given poles for assignment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For linear multivariable time-invariant continuous or discrete-time singular systems it is customary to use a proportional feedback control in order to achieve a desired closed loop behaviour. Derivative feedback is rarely considered. This paper examines how derivative feedback in descriptor systems can be used to alter the structure of the system pencil under various controllability conditions. It is shown that derivative and proportional feedback controls can be constructed such that the closed loop system has a given form and is also regular and has index at most 1. This property ensures the solvability of the resulting system of dynamic-algebraic equations. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way. The problem of pole placement with derivative feedback alone and in combination with proportional state feedback is also investigated. A computational algorithm for improving the “conditioning” of the regularized closed loop system is derived.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article considers the stabilization by output feedback controllers for discrete-time systems. The controller can place all of the closed-loop poles within a specified disk D(-α, 1/β), centred at (-α,0) with radius 1/β, where | - α|  + 1/β < 1. The design method involves the decomposition of the system into two portions. The first portion comprises of all of the poles that are lying outside of the specified disk. A reduced-order model is constructed for this portion. The second portion comprises of all of the remaining poles of the system and is characterized by an H-norm bound. The controller design is then accomplished by using H-control theory. It is shown that, subject to the solvability of an algebraic Riccati equation, output feedback controllers can be systematically derived. The order of the controller is low, and can be as low as the number of the open-loop poles that are lying outside of the specified disk. A step-by-step design algorithm is provided. Numerical examples are given to illustrate the attractiveness of the design method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a simple approach to the problem of designing low-order output feedback controllers for linear continuous systems. The controller can place all of the closed-loop poles within a circle, C(- , 1/ β) , with centre at - and radius of 1/ β in the left half s-plane. The design method is based on transformation of the original system and then applying the bounded-real-lemma to the transformed system. It is shown that subjected to the solvability of an algebraic Riccati equation (ARE), output feedback controllers can then be systematically derived. Furthermore, the order of the controller is low and equals only the number of the open-loop poles lying outside the circle. A step-by-step design algorithm is given. Numerical examples are given to illustrate the design method.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims with the use of linear matrix inequalities approach (LMIs) for application in active vibration control problems in smart strutures. A robust controller for active damping in a panel was designed with piezoelectrical actuators in optimal locations for illustration of the main proposal. It was considered, in the simulations of the closed-loop, a model identified by eigensystem realization algorithm (ERA) and reduced by modal decomposition. We tested two differents techniques to solve the problem. The first one uses LMI approach by state-feedback based in an observer design, considering several simultaneous constraints as: a decay rate, limited input on the actuators, bounded output peak (output energy) and robustness to parametic uncertainties. The results demonstrated the vibration attenuation in the structure by controlling only the first modes and the increased damping in the bandwidth of interest. However, it is possible to occur spillover effects, because the design has not been done considering the dynamic uncertainties related with high frequencies modes. In this sense, the second technique uses the classical H. output feedback control, also solved by LMI approach, considering robustness to residual dynamic to overcome the problem found in the first test. The results are compared and discussed. The responses shown the robust performance of the system and the good reduction of the vibration level, without increase mass.