971 resultados para State estimation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article considers the problem of estimating a partial set of the state vector and/or unknown input vector of linear systems driven by unknown inputs and time-varying delay in the state variables. Three types of reduced-order observers, namely, observers with delays, observers without internal delays and delay-free observers are proposed in this article. Existence conditions and design procedures are presented for the determination of parameters for each case of observers. Numerical examples are presented to illustrate the design procedures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Li-ion batteries have been widely used in electric vehicles, and battery internal state estimation plays an important role in the battery management system. However, it is technically challenging, in particular, for the estimation of the battery internal temperature and state-ofcharge (SOC), which are two key state variables affecting the battery performance. In this paper, a novel method is proposed for realtime simultaneous estimation of these two internal states, thus leading to a significantly improved battery model for realtime SOC estimation. To achieve this, a simplified battery thermoelectric model is firstly built, which couples a thermal submodel and an electrical submodel. The interactions between the battery thermal and electrical behaviours are captured, thus offering a comprehensive description of the battery thermal and electrical behaviour. To achieve more accurate internal state estimations, the model is trained by the simulation error minimization method, and model parameters are optimized by a hybrid optimization method combining a meta-heuristic algorithm and the least square approach. Further, timevarying model parameters under different heat dissipation conditions are considered, and a joint extended Kalman filter is used to simultaneously estimate both the battery internal states and time-varying model parameters in realtime. Experimental results based on the testing data of LiFePO4 batteries confirm the efficacy of the proposed method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Short-term traffic flow data is characterized by rapid and dramatic fluctuations. It reflects the nature of the frequent congestion in the lane, which shows a strong nonlinear feature. Traffic state estimation based on the data gained by electronic sensors is critical for much intelligent traffic management and the traffic control. In this paper, a solution to freeway traffic estimation in Beijing is proposed using a particle filter, based on macroscopic traffic flow model, which estimates both traffic density and speed.Particle filter is a nonlinear prediction method, which has obvious advantages for traffic flows prediction. However, with the increase of sampling period, the volatility of the traffic state curve will be much dramatic. Therefore, the prediction accuracy will be affected and difficulty of forecasting is raised. In this paper, particle filter model is applied to estimate the short-term traffic flow. Numerical study is conducted based on the Beijing freeway data with the sampling period of 2 min. The relatively high accuracy of the results indicates the superiority of the proposed model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three different methods of inclusion of current measurements by phasor measurement units (PMUs) in a power sysetm state estimator is investigated. A comprehensive formulation of the hybrid state estimator incorporating conventional, as well as PMU measurements, is presented for each of the three methods. The behaviour of the elements because of the current measurements in the measurement Jacobian matrix is examined for any possible ill-conditioning of the state estimator gain matrix. The performance of the state estimators are compared in terms of the convergence properties and the varian in the estimated states. The IEEE 14-bus and IEEE 300-bus systems are used as test beds for the study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis presents a novel framework for state estimation in the context of robotic grasping and manipulation. The overall estimation approach is based on fusing various visual cues for manipulator tracking, namely appearance and feature-based, shape-based, and silhouette-based visual cues. Similarly, a framework is developed to fuse the above visual cues, but also kinesthetic cues such as force-torque and tactile measurements, for in-hand object pose estimation. The cues are extracted from multiple sensor modalities and are fused in a variety of Kalman filters.

A hybrid estimator is developed to estimate both a continuous state (robot and object states) and discrete states, called contact modes, which specify how each finger contacts a particular object surface. A static multiple model estimator is used to compute and maintain this mode probability. The thesis also develops an estimation framework for estimating model parameters associated with object grasping. Dual and joint state-parameter estimation is explored for parameter estimation of a grasped object's mass and center of mass. Experimental results demonstrate simultaneous object localization and center of mass estimation.

Dual-arm estimation is developed for two arm robotic manipulation tasks. Two types of filters are explored; the first is an augmented filter that contains both arms in the state vector while the second runs two filters in parallel, one for each arm. These two frameworks and their performance is compared in a dual-arm task of removing a wheel from a hub.

This thesis also presents a new method for action selection involving touch. This next best touch method selects an available action for interacting with an object that will gain the most information. The algorithm employs information theory to compute an information gain metric that is based on a probabilistic belief suitable for the task. An estimation framework is used to maintain this belief over time. Kinesthetic measurements such as contact and tactile measurements are used to update the state belief after every interactive action. Simulation and experimental results are demonstrated using next best touch for object localization, specifically a door handle on a door. The next best touch theory is extended for model parameter determination. Since many objects within a particular object category share the same rough shape, principle component analysis may be used to parametrize the object mesh models. These parameters can be estimated using the action selection technique that selects the touching action which best both localizes and estimates these parameters. Simulation results are then presented involving localizing and determining a parameter of a screwdriver.

Lastly, the next best touch theory is further extended to model classes. Instead of estimating parameters, object class determination is incorporated into the information gain metric calculation. The best touching action is selected in order to best discern between the possible model classes. Simulation results are presented to validate the theory.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider remote state estimation and investigate the tradeoff between the sensor-to-estimator communication rate and the remote estimation quality. It is well known that if the communication rate is one, e.g., the sensor communicates with the remote estimator at each time, then the remote estimation quality is the best. It degrades when the communication rate drops. We present one optimal offline schedule and two online schedules and show that the two online schedules provide better tradeoff between the communication rate and the estimation quality than the optimal offline schedule. Simulation examples demonstrate that significant communication savings can be achieved under the two online schedules which only introduce small increment of the estimation errors. © 1991-2012 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

State-space models are successfully used in many areas of science, engineering and economics to model time series and dynamical systems. We present a fully Bayesian approach to inference and learning (i.e. state estimation and system identification) in nonlinear nonparametric state-space models. We place a Gaussian process prior over the state transition dynamics, resulting in a flexible model able to capture complex dynamical phenomena. To enable efficient inference, we marginalize over the transition dynamics function and, instead, infer directly the joint smoothing distribution using specially tailored Particle Markov Chain Monte Carlo samplers. Once a sample from the smoothing distribution is computed, the state transition predictive distribution can be formulated analytically. Our approach preserves the full nonparametric expressivity of the model and can make use of sparse Gaussian processes to greatly reduce computational complexity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new state estimator algorithm is based on a neurofuzzy network and the Kalman filter algorithm. The major contribution of the paper is recognition of a bias problem in the parameter estimation of the state-space model and the introduction of a simple, effective prefiltering method to achieve unbiased parameter estimates in the state-space model, which will then be applied for state estimation using the Kalman filtering algorithm. Fundamental to this method is a simple prefiltering procedure using a nonlinear principal component analysis method based on the neurofuzzy basis set. This prefiltering can be performed without prior system structure knowledge. Numerical examples demonstrate the effectiveness of the new approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In a world of almost permanent and rapidly increasing electronic data availability, techniques of filtering, compressing, and interpreting this data to transform it into valuable and easily comprehensible information is of utmost importance. One key topic in this area is the capability to deduce future system behavior from a given data input. This book brings together for the first time the complete theory of data-based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data-based modelling, new concepts including extended additive and multiplicative submodels are developed and their extensions to state estimation and data fusion are derived. All these algorithms are illustrated with benchmark and real-life examples to demonstrate their efficiency. Chris Harris and his group have carried out pioneering work which has tied together the fields of neural networks and linguistic rule-based algortihms. This book is aimed at researchers and scientists in time series modeling, empirical data modeling, knowledge discovery, data mining, and data fusion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This note deals with the design of reduced-order observers for a class of nonlinear systems. The order reduction of the observer is achieved by only estimating a required partial set of the state vector. Necessary and sufficient conditions are derived for the existence of reduced-order observers. An observer design procedure based on linear matrix inequalities is given. A numerical example is given to illustrate the design method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe how object estimation by a stationary or a non-stationary camera can be improved using recently-developed robust estimation ideas. The robustness of vision-based systems can be improved significantly by employing a Robust Extended Kalman Filter (REKF). The system performance is also enhanced by increasing the spatial diveristy in measurements via employing additional cameras for video capture. We describe a normal-flow based image segmentation technique to identify the object for the application of our proposed state estimation technique. Our simulations demonstrate that dynamic system modelling coupled with the application of a REKF significantly improves the estimation system performance, especially when large uncertainties are present.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nowadays, one of the most important concerns for many companies is to maintain the operation of their systems without sudden equipment break down. Because of this, new techniques for fault detection and location in mechanical systems subject to dynamic loads have been developed. This paper studies of the influence of the decay rate in the design of state observers using LMI for fault detection in mechanical systems. This influence is analyzed by the performance index proposed by Huh and Stein for the condition of a state observer. An example is presented to illustrate the methodology discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In a feasibility study, the potential of proxy data for the temperature and salinity during the Last Glacial Maximum (LGM, about 19 000 to 23 000 years before present) in constraining the strength of the Atlantic meridional overturning circulation (AMOC) with a general ocean circulation model was explored. The proxy data were simulated by drawing data from four different model simulations at the ocean sediment core locations of the Multiproxy Approach for the Reconstruction of the Glacial Ocean surface (MARGO) project, and perturbing these data with realistic noise estimates. The results suggest that our method has the potential to provide estimates of the past strength of the AMOC even from sparse data, but in general, paleo-sea-surface temperature data without additional prior knowledge about the ocean state during the LGM is not adequate to constrain the model. On the one hand, additional data in the deep-ocean and salinity data are shown to be highly important in estimating the LGM circulation. On the other hand, increasing the amount of surface data alone does not appear to be enough for better estimates. Finally, better initial guesses to start the state estimation procedure would greatly improve the performance of the method. Indeed, with a sufficiently good first guess, just the sea-surface temperature data from the MARGO project promise to be sufficient for reliable estimates of the strength of the AMOC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

El principal objetivo de esta tesis es dotar a los vehículos aéreos no tripulados (UAVs, por sus siglas en inglés) de una fuente de información adicional basada en visión. Esta fuente de información proviene de cámaras ubicadas a bordo de los vehículos o en el suelo. Con ella se busca que los UAVs realicen tareas de aterrizaje o inspección guiados por visión, especialmente en aquellas situaciones en las que no haya disponibilidad de estimar la posición del vehículo con base en GPS, cuando las estimaciones de GPS no tengan la suficiente precisión requerida por las tareas a realizar, o cuando restricciones de carga de pago impidan añadir sensores a bordo de los vehículos. Esta tesis trata con tres de las principales áreas de la visión por computador: seguimiento visual y estimación visual de la pose (posición y orientación), que a su vez constituyen la base de la tercera, denominada control servo visual, que en nuestra aplicación se enfoca en el empleo de información visual para controlar los UAVs. Al respecto, esta tesis se ocupa de presentar propuestas novedosas que permitan solucionar problemas relativos al seguimiento de objetos mediante cámaras ubicadas a bordo de los UAVs, se ocupa de la estimación de la pose de los UAVs basada en información visual obtenida por cámaras ubicadas en el suelo o a bordo, y también se ocupa de la aplicación de las técnicas propuestas para solucionar diferentes problemas, como aquellos concernientes al seguimiento visual para tareas de reabastecimiento autónomo en vuelo o al aterrizaje basado en visión, entre otros. Las diversas técnicas de visión por computador presentadas en esta tesis se proponen con el fin de solucionar dificultades que suelen presentarse cuando se realizan tareas basadas en visión con UAVs, como las relativas a la obtención, en tiempo real, de estimaciones robustas, o como problemas generados por vibraciones. Los algoritmos propuestos en esta tesis han sido probados con información de imágenes reales obtenidas realizando pruebas on-line y off-line. Diversos mecanismos de evaluación han sido empleados con el propósito de analizar el desempeño de los algoritmos propuestos, entre los que se incluyen datos simulados, imágenes de vuelos reales, estimaciones precisas de posición empleando el sistema VICON y comparaciones con algoritmos del estado del arte. Los resultados obtenidos indican que los algoritmos de visión por computador propuestos tienen un desempeño que es comparable e incluso mejor al de algoritmos que se encuentran en el estado del arte. Los algoritmos propuestos permiten la obtención de estimaciones robustas en tiempo real, lo cual permite su uso en tareas de control visual. El desempeño de estos algoritmos es apropiado para las exigencias de las distintas aplicaciones examinadas: reabastecimiento autónomo en vuelo, aterrizaje y estimación del estado del UAV. Abstract The main objective of this thesis is to provide Unmanned Aerial Vehicles (UAVs) with an additional vision-based source of information extracted by cameras located either on-board or on the ground, in order to allow UAVs to develop visually guided tasks, such as landing or inspection, especially in situations where GPS information is not available, where GPS-based position estimation is not accurate enough for the task to develop, or where payload restrictions do not allow the incorporation of additional sensors on-board. This thesis covers three of the main computer vision areas: visual tracking and visual pose estimation, which are the bases the third one called visual servoing, which, in this work, focuses on using visual information to control UAVs. In this sense, the thesis focuses on presenting novel solutions for solving the tracking problem of objects when using cameras on-board UAVs, on estimating the pose of the UAVs based on the visual information collected by cameras located either on the ground or on-board, and also focuses on applying these proposed techniques for solving different problems, such as visual tracking for aerial refuelling or vision-based landing, among others. The different computer vision techniques presented in this thesis are proposed to solve some of the frequently problems found when addressing vision-based tasks in UAVs, such as obtaining robust vision-based estimations at real-time frame rates, and problems caused by vibrations, or 3D motion. All the proposed algorithms have been tested with real-image data in on-line and off-line tests. Different evaluation mechanisms have been used to analyze the performance of the proposed algorithms, such as simulated data, images from real-flight tests, publicly available datasets, manually generated ground truth data, accurate position estimations using a VICON system and a robotic cell, and comparison with state of the art algorithms. Results show that the proposed computer vision algorithms obtain performances that are comparable to, or even better than, state of the art algorithms, obtaining robust estimations at real-time frame rates. This proves that the proposed techniques are fast enough for vision-based control tasks. Therefore, the performance of the proposed vision algorithms has shown to be of a standard appropriate to the different explored applications: aerial refuelling and landing, and state estimation. It is noteworthy that they have low computational overheads for vision systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The subject of this thesis is the real-time implementation of algebraic derivative estimators as observers in nonlinear control of magnetic levitation systems. These estimators are based on operational calculus and implemented as FIR filters, resulting on a feasible real-time implementation. The algebraic method provide a fast, non-asymptotic state estimation. For the magnetic levitation systems, the algebraic estimators may replace the standard asymptotic observers assuring very good performance and robustness. To validate the estimators as observers in closed-loop control, several nonlinear controllers are proposed and implemented in a experimental magnetic levitation prototype. The results show an excellent performance of the proposed control laws together with the algebraic estimators.