990 resultados para Starch


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the preparation and electrospinning of acidified-oxidized potato starch. In this article, acidified-oxidized potato starch was prepared by adding ammonium persulfate as an oxidizing agent and hydrochloric acid as a catalyst. The effect of reaction time, temperature, the concentration of hydrochloric acid and the content of ammonium persulfate on the viscosity and content of carboxyl were discussed. The optimum reaction conditions were as follows: 1.5 hours ,50℃, 0.5mol/l HCl, 2.5% (NH4)2S2O8. And then, the acidified-oxidized potato starch prepared at the optimum condition was dissolved in dimethyl sulfoxide (DMSO) to be electrospinned by contrast to native starch. Electrospinning of 5wt%-21wt% of modified starch in DMSO produced beads, beaded fibers, and smooth fibers, depending on the concentration range. Smooth fibers were observed until the concentration reached 19wt%, while native starch was 5wt%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foods containing elevated levels of health functional components such as resistant starch and polyphenolic antioxidants may have beneficial effects on human health. Pasta incorporating either red sorghum flour (RSF) or white sorghum flour (WSF) each at 20%, 30% and 40% substitution of durum wheat semolina (DWS) was prepared and compared to pasta made from 100% DWS (control) for content of starch fractions, phenolic profile and antioxidant capacity, before and after cooking. Total, digestible and resistant starch contents were determined by the AOAC method; individual phenolic acids and anthocyanins by reverse phase-HPLC analysis; total phenolic content by the Folin–Ciocalteu method and antioxidant capacity by the ABTS assay. The addition of both RSF and WSF increased the resistant starch content, bound phenolic acids, total phenolic content and antioxidant capacity at all incorporation levels compared to the control pasta; while free phenolic acids and anthocyanins were higher in the RSF-containing pasta only. Cooking did not change the resistant starch content of any of the pasta formulations. Cooking did however decrease the free phenolic acids, anthocyanins, total phenolic content and antioxidant capacity and increased the bound phenolic acids of the sorghum-containing pastas. The study suggests that these sorghum flours may be very useful for the preparation of pasta with increased levels of resistant starch and polyphenolic antioxidants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole grain sorghum is a valuable source of resistant starch and polyphenolic antioxidants and its addition into staple food like pasta may reduce the starch digestibility. However, incorporating nondurum wheat materials into pasta provides a challenge in terms of maintaining cooking quality and consumer acceptability. Pasta was prepared from 100% durum wheat semolina (DWS) as control or by replacing DWS with either wholegrain red sorghum flour (RSF) or white sorghum flour (WSF) each at 20%, 30%, and 40% incorporation levels, following a laboratory-scale procedure. Pasta samples were evaluated for proximate composition, in vitro starch digestibility, cooking quality, and consumer acceptability. The addition of both RSF and WSF lowered the extent of in vitro starch digestion at all substitution levels compared to the control pasta. The rapidly digestible starch was lowered in all the sorghum-containing pastas compared to the control pasta. Neither RSF or WSF addition affected the pasta quality attributes (water absorption, swelling index, dry matter, adhesiveness, cohesiveness, and springiness), except color and hardness which were negatively affected. Consumer sensory results indicated that pasta samples containing 20% and 30% RSF or WSF had acceptable palatability based on meeting one or both of the preset acceptability criteria. It is concluded that the addition of wholegrain sorghum flour to pasta at 30% incorporation level is possible to reduce starch digestibility, while maintaining adequate cooking quality and consumer acceptability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The starch nanofiber mats were prepared by electrospinning, and crosslinked by deal with glutaraldehyde vapor in a sealed containers. The morphology and structure of the fibers (before and after crosslinking) were characterized by SEM and FT-IR, and the properties of the product were measured by tensile test and contact angle measurements. Test results show that, acetalization reaction occurred between the intermolecular of glutaraldehyde and starch, the morphology of crosslinked fibers can be grossly preserved compared with the uncrosslinked starch fibers, and tensile properties and water resistance of the fiber mats have been greatly improved after glutaraldehyde crosslinking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leucoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, degrades starch, this degradation being supposed to occur in the plant material which leafcutters forage to the nests, generating most of the glucose which the ants utilize for food. In the present investigation, we show that laboratory cultures of L. gongylophorus produce extracellular alpha-amylase and maltase which degrade starch to glucose, reinforcing that the ants can obtain glucose from starch through the symbiotic fungus. Glucose was found to repress a-amylase and, more severely, maltase activity, thus repressing starch degradation by L. gongylophorus, so that we hypothesize that: (1) glucose down-regulation of starch degradation also occurs in the Atta sexdens fungus garden; (2) glucose consumption from the fungus garden by A. sexdens stimutates degradation of starch from plant material by L. gongylophorus, which may represent a mechanism by which Leafcutters can control enzyme production by the symbiotic fungus. Since glucose is found in the fungus garden inside the nests, down-regulation of starch degradation by glucose is supposed to occur in the nest and play a part in the control of fungal enzyme production by leafcutters. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of lactic acid, SO2, temperature, and their interactions were assessed on the dynamic steeping of a Brazilian dent corn (hybrid XL 606) to determine the ideal relationship among these variables to improve the wet-milling process for starch and corn by-products production. A 2x2x3 factorial experimental design was used with SO2 levels of 0.05 and 0.1% (w/v), lactic acid levels of 0 and 0.5% (v/v), and temperatures of 52, 60, and 68degreesC. Starch yield was used as deciding factor to choose the best treatment. Lactic acid added in the steep solution improved the starch yield by an average of 5.6 percentage points. SO2 was more available to break down the structural protein network at 0.1% than at the 0.05% level. Starch-gluten separation was difficult at 68degreesC. The lactic acid and SO2 concentrations and steeping temperatures for better starch recovery were 0.5, 0.1, and 52degreesC, respectively. The Intermittent Milling and Dynamic Steeping (IMDS) process produced, on average, 1.4% more starch than the conventional 36- hr steeping process. Protein in starch, oil content in germ, and germ damage were used as quality factors. Total steep time can be reduced from 36 hr for conventional wet-milling to 8 hr for the IMDS process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoplastic starch/natural rubber polymer blends were prepared using directly natural latex and cornstarch. The blends were prepared in an intensive batch mixer at 150 degreesC, with natural rubber content varying from 2.5 to 20%. The blends were characterised by mechanical analysis (stress-strain) and by scanning electron microscopy. The results revealed a reduction in the modulus and in tensile strength, becoming the blends less brittle than thermoplastic starch alone. Phase separation was observed in some compositions and was dependent on rubber and on plasticiser content (glycerol). Increasing plasticiser content made possible the addition of higher amounts of rubber. The addition of rubber was, however, limited by phase separation the appearance of which depended on the glycerol content. Scanning electron microscopy showed a good dispersion of the natural rubber in the continuos phase of thermoplastic starch matrix. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several researches have been developed in order to verify the porosity effect over the ceramic material properties. The starch consolidation casting (SCC) allows to obtain porous ceramics by using starch as a binder and pore forming element. This work is intended to describe the porous mathematical behavior and the mechanical resistance at different commercial starch concentration. Ceramic samples were made with alumina and potato and corn starches. The slips were prepared with 10 to 50 wt% of starch. The specimens were characterized by apparent density measurements and three-point flexural test associated to Weibull statistics. Results indicated that the porosity showed a first-order exponential equation e(-x/c) increasing in both kinds of starches, so it was confirmed that the alumina ceramic porosity is related to the kind of starch used. The mechanical resistance is represented by a logarithmic expression R = A + B/1+10((Log(x0)-P)C).