993 resultados para Squash mosaic virus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Proteção de Plantas) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weeds can act as important reservoirs for viruses. Solanum americanum (Black nightshade) is a common weed in Brazil and samples showing mosaic were collected from sweet pepper crops to verify the presence of viruses. One sample showed mixed infection between Cucumber mosaic virus (CMV) and Potato virus Y (PVY) and one sample showed simple infection by PVY. Both virus species were transmitted by plant extract and caused mosaic in tomato (Solanum lycopersicum cv. Santa Clara), sweet pepper (Capsicum annuum cv. Magda), Nicotiana benthamiana and N. tabaccum TNN, and local lesions on Chenopodium quinoa, C. murale and C. amaranticolor. The coat protein sequences for CMV and PVY found in S. americanum are phylogenetically more related to isolates from tomato. We conclude that S. americanum can act as a reservoir for different viruses during and between sweet pepper crop seasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Proteção de Plantas) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To better understand agronomic and end-use quality in wheat (Triticum aestivum L.) we developed a population containing 154 F6:8 recombinant inbred lines (RILs) from the cross TAM107-R7/Arlin. The parental lines and RILs were phenotyped at six environments in Nebraska and differed for resistance to Wheat soilborne mosaic virus (WSBMV), morphological, agronomic, and end-use quality traits. Additionally, a 2300 cM genome-wide linkage map was created for quantitative trait loci (QTL) analysis. Based on our results across multiple environments, the best RILs could be used for cultivar improvement. The population and marker data are publicly available for interested researchers for future research. The population was used to determine the effect of WSBMV on agronomic and end-use quality and for the mapping of a resistance locus. Results from two infected environments showed that all but two agronomic traits were significantly affected by the disease. Specifically, the disease reduced grain yield by 30% of susceptible RILs and they flowered 5 d later and were 11 cm shorter. End-use quality traits were not negatively affected but flour protein content was increased in susceptible RILs. The resistance locus SbmTmr1 mapped to 27.1 cM near marker wPt-5870 on chromosome 5DL using ELISA data. Finally, we investigated how WSBMV affected QTL detection in the population. QTLs were mapped at two WSBMV infected environments, four uninfected environments, and in the resistant and susceptible RIL subpopulations in the infected environments. Fifty-two significant (LOD≥3) QTLs were mapped in RILs at uninfected environments. Many of the QTLs were pleiotropic or closely linked at 6 chromosomal regions. Forty-seven QTLs were mapped in RILs at WSBMV infected environments. Comparisons between uninfected and infected environments identified 20 common QTLs and 21 environmentally specific QTLs. Finally, 24 QTLs were determined to be affected by WSBMV by comparing the subpopulations in QTL analyses within the same environment. The comparisons were statistically validated using marker by disease interactions. These results showed that QTLs can be affected by WSBMV and careful interpretation of QTL results is needed where biotic stresses are present. Finally, beneficial QTLs not affected by WSBMV or the environment are candidates for marker-assisted selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A protocol for the in vitro culture of Cucurbita pepo cv. Caserta was studied, using a cotyledon segment with an attached hypocotyl fragment as an explant. First, to determine the optimal seedling age, explants were collected from 4 to 6-day-old in vitro germinated seedlings and cultured in MS basal medium supplemented with benzylaminopurine (BAP, 4.5 mu M), under a 16-h photoperiod at 27 degrees C. Based on the results obtained, the explants collected from the 4-day-old seedlings were then cultured in MS basal medium supplemented with different concentrations of BAP (0, 1.1, 2.2, 3.3, 4.5, or 5.5 mu M) and incubated under a 16-h photoperiod at 27 degrees C. In vitro organogenesis was most efficient with explants collected from 4-day-old seedlings cultured in medium supplemented with 4.5 mu M of BAP. After 4 weeks of incubation the development of adventitious buds at the cotyledon/hypocotyl junction could be observed. These buds were transferred to elongation and rooting medium and the developed plants were acclimatized to greenhouse conditions. The morphogenic process was characterized using light and scanning electron microscopy analyses to confirm the organogenesis. The results showed that this alternate explant is efficient for in vitro culture of zucchini squash cv. Caserta. The protocol will be further examined for future use in genetic transformation experiments in this species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cowpea aphid-borne mosaic virus (CABMV) causes major diseases in cowpea and passion flower plants in Brazil and also in other countries. CABMV has also been isolated from leguminous species including, Cassia hoffmannseggii, Canavalia rosea, Crotalaria juncea and Arachis hypogaea in Brazil. The virus seems to be adapted to two distinct families, the Passifloraceae and Fabaceae. Aiming to identify CABMV and elucidate a possible host adaptation of this virus species, isolates from cowpea, passion flower and C.hoffmannseggii collected in the states of Pernambuco and Rio Grande do Norte were analysed by sequencing the complete coat protein genes. A phylogenetic tree was constructed based on the obtained sequences and those available in public databases. Major Brazilian isolates from passion flower, independently of the geographical distances among them, were grouped in three different clusters. The possible host adaptation was also observed in fabaceous-infecting CABMV Brazilian isolates. These host adaptations possibly occurred independently within Brazil, so all these clusters belong to a bigger Brazilian cluster. Nevertheless, African passion flower or cowpea-infecting isolates formed totally different clusters. These results showed that host adaptation could be one factor for CABMV evolution, although geographical isolation is a stronger factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Tospoviruses (Genus Tospovirus, Family Bunyaviridae) are phytopathogens responsible for significant worldwide crop losses. They have a tripartite negative and ambisense RNA genome segments, termed S (Small), M (Medium) and L (Large) RNA. The vector-transmission is mediated by thrips in a circulative-propagative manner. For new tospovirus species acceptance, several analyses are needed, e. g., the determination of the viral protein sequences for enlightenment of their evolutionary history. Methodology/Principal Findings: Biological (host range and symptomatology), serological, and molecular (S and M RNA sequencing and evolutionary studies) experiments were performed to characterize and differentiate a new tospovirus species, Bean necrotic mosaic virus (BeNMV), which naturally infects common beans in Brazil. Based upon the results, BeNMV can be classified as a novel species and, together with Soybean vein necrosis-associated virus (SVNaV), they represent members of a new evolutionary lineage within the genus Tospovirus. Conclusion/Significances: Taken together, these evidences suggest that two divergent lineages of tospoviruses are circulating in the American continent and, based on the main clades diversity (American and Eurasian lineages), new tospovirus species related to the BeNMV-SVNaV clade remain to be discovered. This possible greater diversity of tospoviruses may be reflected in a higher number of crops as natural hosts, increasing the economic impact on agriculture. This idea also is supported since BeNMV and SVNaV were discovered naturally infecting atypical hosts (common bean and soybean, respectively), indicating, in this case, a preference for leguminous species. Further studies, for instance a survey focusing on crops, specifically of leguminous plants, may reveal a greater tospovirus diversity not only in the Americas (where both viruses were reported), but throughout the world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soilborne wheat mosaic virus (SBWMV) is one of the most important winter wheat pathogens worldwide. To identify genes for resistance to the virus in U.S. winter wheat, association study was conducted using a selected panel of 205 elite experimental lines and cultivars from U.S. hard and soft winter wheat breeding programs. Virus symptoms were evaluated twice in virus-infected fields for the panel at Manhattan, KS in spring 2010 and 2011 and for a subpanel of 137 hard winter wheat accessions at Stillwater, OK in spring 2008. At the two locations, 69.8 and 79.5% of cultivars were resistant or moderately resistant to the disease, respectively. After 282 simple-sequence repeat markers covering all wheat chromosome arms were scanned for association in the panel, marker Xgwm469 on the long arm of chromosome 5D (5DL) showed a significant association with the disease rating. Three alleles (Xgwm469-165bp, -167bp, and -169bp) were associated with resistance and the null allele was associated with susceptibility. Correlations between the marker and the disease rating were highly significant (0.80 in Manhattan at P < 0.0001 and 0.63 in Stillwater at P < 0.0001). The alleles Xgwm469-165bp and Xgwm469-169bp were present mainly in the hard winter wheat group, whereas allele Xgwm469-167bp was predominant in the soft winter wheat. The 169 bp allele can be traced back to 'Newton', and the 165 bp allele to Aegilops tauschii. In addition, a novel locus on the short arm of chromosome 4D (4DS) was also identified to associate with the disease rating. Marker Xgwm469-5DL is closely linked to SBWMV resistance and highly polymorphic across the winter wheat accessions sampled in the study and, thus, should be useful in marker-assisted selection in U.S. winter wheat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virus emergence is a complex phenomenon, which generally involves spread to a new host from a wild host, followed by adaptation to the new host. Although viruses account for the largest fraction of emerging crop pathogens, knowledge about their emergence is incomplete. We address here the question of whether Pepino mosaic virus (PepMV) emergence as a major tomato pathogen worldwide could have involved spread from wild to cultivated plant species and host adaptation. For this, we surveyed natural populations of wild tomatoes in southern Peru for PepMV infection. PepMV incidence, genetic variation, population structure, and accumulation in various hosts were analyzed. PepMV incidence in wild tomatoes was high, and a strain not yet reported in domestic tomato was characterized. This strain had a wide host range within the Solanaceae, multiplying efficiently in most assayed Solanum species and being adapted to wild tomato hosts. Conversely, PepMV isolates from tomato crops showed evidence of adaptation to domestic tomato, possibly traded against adaptation to wild tomatoes. Phylogenetic reconstructions indicated that the most probable ancestral sequence came from a wild Solanum species. A high incidence of PepMV in wild tomato relatives would favor virus spread to crops and its efficient multiplication in different Solanum species, including tomato, allowing its establishment as an epidemic pathogen. Later, adaptation to tomato, traded off against adaptation to other Solanum species, would isolate tomato populations from those in other hosts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK), two distinct members of the mitogen-activated protein (MAP) kinase family, are activated in tobacco resisting infection by tobacco mosaic virus (TMV). WIPK activation by TMV depends on the disease-resistance gene N because infection of susceptible tobacco not carrying the N gene failed to activate WIPK. Activation of WIPK required not only posttranslational phosphorylation but also a preceding rise in its mRNA and de novo synthesis of WIPK protein. The induction by TMV of WIPK mRNA and protein also occurred systemically. Its activation at the mRNA, protein, and enzyme levels was independent of salicylic acid. The regulation of WIPK at multiple levels by an N gene-mediated signal(s) suggests that this MAP kinase may be an important component upstream of salicylic acid in the signal-transduction pathway(s) leading to local and systemic resistance to TMV.